The occurrence and behavior of wastewater indicator compounds in the Santa Ana River (SAR) water and the underlying aquifer recharged by the SAR has been studied. The SAR contains a high proportion of tertiary treated wastewater effluents, up to 100% during summer and fall. The following water quality parameters were quantified: four specific wastewater indicator compounds, ethylene diaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), a naphthalene dicarboxylate (NDC) isomer, alkylphenol polyethoxy carboxylates (APECs), and selected haloacetic acids (HAAs), nitrate, dissolved oxygen (DO), DOC, total carbohydrate, and phenolic substances. Statistical analysis indicated that normal distribution was adequate to describe the probability distribution of the constituents in most cases. In the river, the concentrations of wastewater indicator compounds decreased as the fraction of storm runoff increased. EDTA and NDC were detected in a monitoring well near the river and in two production wells 1.8 and 2.7 km down gradient with little apparent attenuation. By contrast, NTA, APECs, bromochloro- and dibromoacetic acids appeared to be attenuated significantly during infiltration of river water and groundwater transport. 相似文献
Environmental Science and Pollution Research - Advanced oxidation processes (AOPs) are efficient methods for water purification. However, there are few studies on using peroxymonosulfate (PMS) to... 相似文献
The Yellow River Delta is the largest and youngest estuarine and coastal wetland in China and is experiencing the most active interactions of seawater and freshwater in the world. Bacteria played multifaceted influence on soil biogeochemical processes, and it was necessary to investigate the intermodulation between the soil factors and bacterial communities. Soil samples were collected at sites with different salinity degree, vegetations, and interference. The sequences of bacilli were tested using 16S rRNA sequencing method and operational taxonomic units were classified with 97% similarity. The soil was highly salinized and oligotrophic, and the wetland was nitrogen-restricted. Redundancy analysis suggested that factors related with seawater erosion were principal to drive the changes of soil bacterial communities and then the nutrient level and human disturbance. A broader implication was that, in the early succession stages of the coastal ecosystem, seawater erosion was the key driver of the variations of marine oligotrophic bacterial communities, while the increasing nutrient availability may enhance in the abundance of the riverine copiotrophs in the late stages. This study provided new insights on the characteristics of soil bacterial communities in estuarine and coastal wetlands.
Microbial communities are important for high composting efficiency and good quality composts. This study was conducted to compare the changes of physicochemical and bacterial characteristics in composting from different raw materials, including chicken manure (CM), duck manure (DM), sheep manure (SM), food waste (FW), and vegetable waste (VW). The role and interactions of core bacteria and their contribution to maturity in diverse composts were analyzed by advanced bioinformatics methods combined sequencing with co-occurrence network and structural equation modeling (SEM). Results indicated that there were obviously different bacterial composition and diversity in composting from diverse sources. FW had a low pH and different physiochemical characteristics compared to other composts but they all achieved similar maturity products. Redundancy analysis suggested total organic carbon, phosphorus, and temperature governed the composition of microbial species but key factors were different in diverse composts. Network analysis showed completely different interactions of core bacterial community from diverse composts but Thermobifida was the ubiquitous core bacteria in composting bacterial network. Sphaerobacter and Lactobacillus as core genus were presented in the starting mesophilic and thermophilic phases of composting from manure (CM, DM, SM) and municipal solid waste (FW, VW), respectively. SEM indicated core bacteria had the positive, direct, and the biggest (>?80%) effects on composting maturity. Therefore, this study presents theoretical basis to identify and enhance the core bacteria for improving full-scale composting efficiency facing more and more organic wastes.
Quantifying greenhouse gas (GHG) emissions from wetland ecosystems is a relatively new issue in global climate change studies. China has approximately 22% of the world's rice paddies and 38% of the world's rice production, which are crucial to accurately estimate the global warming potential (GWP) at regional scale. This paper reports an application of a biogeochemical model (DeNitrification and DeComposition or DNDC) for quantifying GWP from rice fields in the Tai-Lake region of China. For this application, DNDC is linked to a 1:50,000 soil database, which was derived from 1107 paddy soil profiles compiled during the Second National Soil Survey of China in the 1980–1990s. The simulated results show that the 2.34 Mha of paddy soil cultivated in rice–wheat rotation in the Tai-Lake region emitted about ?1.48 Tg C, 0.84 Tg N and 5.67 Tg C as CO2, N2O, and CH4 respectively, with a cumulative GWP of 565 Tg CO2 equivalent from 1982 to 2000. As for soil subgroups, the highest GWP (26,900 kg CO2 equivalent ha?1 yr?1) was linked to gleyed paddy soils accounting for about 4.4% of the total area of paddy soils. The lowest GWP (5370 kg CO2 equivalent ha?1 yr?1) was associated with submergenic paddy soils accounting for about 0.32% of the total area of paddy soils. The most common soil in the area was hydromorphic paddy soils, which accounted for about 53% of the total area of paddy soils with a GWP of 12,300 kg CO2 equivalent ha?1 yr?1. On a regional basis, the annual averaged GWP in the polder, Tai-Lake plain, and alluvial plain soil regions was distinctly higher than that in the low mountainous and Hilly soil regions. As for administrative areas, the average annual GWP of counties in Shanghai city was high. Conversely, the average annual GWP of counties in Jiangsu province was low. The high variability in soil properties throughout the Tai-Lake region is important and affects the net greenhouse gas emissions. Therefore, the use of detailed soil data sets with high-resolution digital soil maps is essential to improve the accuracy of GWP estimates with process-based models at regional and national scales. 相似文献