首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   866篇
  免费   3篇
  国内免费   5篇
安全科学   26篇
废物处理   16篇
环保管理   253篇
综合类   59篇
基础理论   182篇
污染及防治   250篇
评价与监测   60篇
社会与环境   19篇
灾害及防治   9篇
  2022年   6篇
  2021年   5篇
  2020年   7篇
  2017年   7篇
  2016年   18篇
  2015年   7篇
  2014年   5篇
  2013年   113篇
  2012年   21篇
  2011年   30篇
  2010年   31篇
  2009年   31篇
  2008年   37篇
  2007年   43篇
  2006年   48篇
  2005年   26篇
  2004年   36篇
  2003年   30篇
  2002年   33篇
  2001年   18篇
  2000年   19篇
  1999年   7篇
  1998年   17篇
  1997年   14篇
  1996年   12篇
  1995年   14篇
  1994年   9篇
  1993年   10篇
  1992年   11篇
  1991年   12篇
  1990年   7篇
  1989年   11篇
  1988年   11篇
  1987年   10篇
  1986年   8篇
  1985年   10篇
  1984年   17篇
  1983年   14篇
  1982年   10篇
  1981年   13篇
  1980年   6篇
  1979年   14篇
  1978年   9篇
  1977年   5篇
  1976年   8篇
  1975年   7篇
  1974年   6篇
  1972年   5篇
  1971年   5篇
  1970年   4篇
排序方式: 共有874条查询结果,搜索用时 15 毫秒
31.
The current U.S. Environmental Protection Agency (U.S. EPA) protocols for mercury determinations in aqueous and solid waste samples (SW-846 Methods 7470 and 7471) using recirculating cold-vapor atomic absorption spectrometry (CV-AAS) have been evaluated. The U.S. EPA methods are not sufficiently flexible to permit special quality control (QC) measures, have limited detectability for low-level mercury concentrations, and are plagued by spectral interferences caused by the nonspecific absorption of primary mercury radiation by volatile organic vapors. The U.S. EPA protocols have been modified in a single-laboratory study to facilitate additional QC measures, to enhance detectability for low-level mercury concentrations, and to eliminate nonspecific vapor absorption interferences. Volumetric manipulations for additional QC measures, if required, are facilitated by performing the sample digestions in Erlenmeyer flasks rather than in the current Biochemical Oxygen Demand (BOD) reduction-aeration bottles. Typical manipulations for additional QC measures that are now feasible include dilution of concentrated samples and multiple aliquot sampling for post-digestion spike and replicate analyses. Instrument detectability is improved 10-fold by using a gas sparging bottle as a dedicated reduction-aeration vessel and a silver wool-amalgamation CV-AAS system operated in an open configuration. The on-line amalgamation/thermal desorption process of the modified CV-AAS system eliminates interfering water and organic matrix vapors prior to the mercury absorption measurement. Good accuracy and precision have been obtained with the amalgamation CV-AAS system for the analyses of four reference sediment materials. The amalgamation CV-AAS measurements on the reference sediment digests have been successfully performed at absolute mercury concentration levels that are only 1 to 4 times above the instrumental detection limit of the U.S. EPA recirculating CV-AAS method.  相似文献   
32.
The work outlined in this paper had three objectives. The first was to explore the effects of ozone pollution on grain yield and quality of commercially-grown winter wheat cultivars. The second was to derive a stomatal ozone flux model for winter wheat and compare with those already developed for spring wheat. The third was to evaluate exposure- versus flux–response approaches from a risk assessment perspective, and explore the implications of genetic variation in modelled ozone flux.Fifteen winter wheat cultivars were grown in open-top chambers where they were exposed to four levels of ozone. During fumigation, stomatal conductance measurements were made over the lifespan of the flag leaf across a range of environmental conditions. Although significant intra-specific variation in ‘ozone sensitivity’ (in terms of impacts on yield) was identified, yield was inversely related (R2 = 0.63, P < 0.001) to the accumulated hourly averaged ozone exposure above 40 ppb during daylight hours (AOT40) across the dataset. The adverse effect of ozone on yield was principally due to a decline in seed weight. Algorithms defining the influence of environmental variables on stomatal uptake were subtly different from those currently in use, based on data for spring wheat, to map ozone impacts on pan-European cereal yield. Considerable intra-specific variation in phenological effects was identified. This meant that an ‘average behaviour’ had to be derived which reduced the predictive capability of the derived stomatal flux model (R2 = 0.49, P < 0.001, 15 cultivars included). Indeed, given the intra-specific variability encountered, the flux model that was derived from the full dataset was no better in predicting O3 impacts on wheat yield than was the AOT40 index. The study highlights the need to use ozone risk assessment tools appropriate to specific vegetation types when modelling and mapping ozone impacts at the regional level.  相似文献   
33.
We present a study of the seasonal and diurnal variability of carbon monoxide and selected volatile organic compounds in the Los Angeles area. Measurements were made during four different nine-day field campaigns in April/May, September, and November, 2007, and February, 2008, at the Mt. Wilson sampling site, which is located at an elevation of approximately 1700 m in the San Gabriel Mountains overlooking Pasadena and the Los Angeles basin. The results were used to characterize the Mt. Wilson site as a representative location for monitoring integrated Los Angeles basin emissions, and, by reference to carbon monoxide emissions, to estimate average annual emissions. The considerable seasonal variability of many hydrocarbons, in both their measured mixing ratios and their relationship to carbon monoxide, was indicative of variable source strengths. Most interestingly, perturbation of C4 hydrocarbon ratios suggested an enhanced role for chlorine chemistry during the month of September, likely as the result of Los Angeles’ coastal location. Such coastal influence was confirmed by observations of enhanced mixing ratios of marine halocarbons, as well as air mass back trajectories.  相似文献   
34.
A new analytical method has been developed for the quantification of 59 different persistent organohalogen compounds, such as polybrominated diphenyl ethers (PBDEs), polychlorinated naphthalenes (PCNs), polychlorinated biphenyls (PCBs), PCB metabolites, organochlorine pesticides (OCPs) in biological organ tissues. The optimum extraction and cleanup procedures were examined using accelerated solvent extraction (ASE), automated gel permeation chromatography (GPC) on Biobeads S-X3 and automated solid phase extraction (SPE) on silica-gel. The target compounds were divided into two fractions, non-polar compounds and more polar compounds, which in the latter fraction was subsequently methylated using diazomethane. Detection can be achieved by GC/MS in negative chemical ionization (NCI) mode. The average recoveries of the compounds spiked in swine liver, heart, kidney, and cattle adipose tissues were considered satisfactory, and it was confirmed that the method could be used in routine analysis.  相似文献   
35.
Thermal evaporation of a variety of simulated pore waters from the region of Yucca Mountain, Nevada, produced acidic liquids and gases during the final stages of evaporation. Several simulated pore waters were prepared and then thermally distilled in order to collect and analyze fractions of the evolved vapor. In some cases, distillates collected towards the end of the distillation were highly acidic; in other cases the pH of the distillate remained comparatively unchanged during the course of the distillation. The results suggest that the pH values of the later fractions are determined by the initial composition of the water. Acid production stems from the hydrolysis of magnesium ions, especially at near dryness. Near the end of the distillation, magnesium nitrate and magnesium chloride begin to lose water of hydration, greatly accelerating their thermal decomposition to form acid. Acid formation is promoted further when precipitated calcium carbonate is removed. Specifically, calcium chloride-rich pore waters containing moderate (10–20 ppm) levels of magnesium and nitrate and low levels of bicarbonate produced mixtures of nitric and hydrochloric acid, resulting in a precipitous drop in pH to values of 1 or lower after about 95% of the original volume was distilled. Waters with either low or moderate magnesium content coupled with high levels of bicarbonate produced slightly basic fractions (pH 7–9). If calcium was present in excess of bicarbonate, waters containing moderate levels of magnesium produced acid even in the presence of bicarbonate, due to the precipitation of calcium carbonate. Other salts such as halite and anhydrite promote the segregation of acidic vapors from residual basic solids. The concomitant release of wet acid gas has implications for the integrity of the alloys under consideration for containers at the Yucca Mountain nuclear waste repository. Condensed acid gases at very low pH, especially mixtures of nitric and hydrochloric acid, are capable of corroding even alloys, such as nickel-based Alloy 22, which are considered to be corrosion-resistant under milder conditions.  相似文献   
36.
Vehicular emitted air pollutant concentrations were studied near three types of roadways in Austin, Texas: (1) State Highway 71 (SH-71), a heavily traveled arterial highway dominated by passenger vehicles; (2) Interstate 35 (I-35), a limited access highway north of Austin in Georgetown; and (3) Farm to Market Road 973 (FM-973), a heavily traveled surface roadway dominated by truck traffic. Air pollutants examined include carbon monoxide (CO), oxides of nitrogen (NOx), and carbonyl species in the gas-phase. In the particle phase, ultrafine particle (UFP) concentrations (diameter < 100 nm), fine particulate matter (PM2.5, diameter < 2.5 μm) mass and carbon content and several particle-bound organics were examined. All roadways had an upwind stationary sampling location, one or two fixed downwind sample locations and a mobile monitoring platform that characterized pollutant concentrations fall-off with increased distance from the roadways. Data reported in this paper focus on UFP while other pollutants and near-roadway chemical processes are examined in a companion paper. Traffic volume, especially heavy-duty traffic, wind speed, and proximity to the road were found to be the most important factors determining UFP concentrations near the roadways. Since wind directions were not consistent during the sampling periods, distances along wind trajectories from the roadway to the sampling points were used to study the decay characteristics of UFPs. Under perpendicular wind conditions, for all studied roadway types, particle number concentrations increased dramatically moving from the upwind side to the downwind side. The elevated particle number concentrations decay exponentially with increasing distances from the roadway with sharp concentration gradients observed within 100–150 m, similar to previously reported studies. A single exponential decay curve was found to fit the data collected from all three roadways very well under perpendicular wind conditions. No consistent pattern was observed for UFPs under parallel wind conditions. However, regardless of wind conditions, particle concentrations returned to background levels within a few hundred meters of the roadway. Within measured UFP size ranges, smaller particles (6–25 nm) decayed faster than larger ones (100–300 nm). Similar decay rates were observed among UFP number, surface, and volume.  相似文献   
37.
Environmental surveillance of poliovirus (PV) and other non-enveloped viruses can help identify silent circulation and is necessary to certify eradication. The bag-mediated filtration system is an efficient method to filter large volumes of environmental waters at field sites for monitoring the presence of viruses. As filters may require long transit times to off-site laboratories for processing, viral inactivation or overgrowth of bacteria and fungi can interfere with virus detection and quantification (Miki and Jacquet in Aquatic Microb Ecol 51(2):195–208, 2008). To evaluate virus survival over time on ViroCap? filters, the filters were seeded with PV type 1 (PV1) and/or MS2 and then dosed with preservatives or antibiotics prior to storage and elution. These filters were stored at various temperatures and time periods, and then eluted for PV1 and MS2 recovery quantification. Filters dosed with the preservative combination of 2% sodium benzoate and 0.2% calcium propionate had increased virus survival over time when stored at 25 °C, compared to samples stored at 25 °C with no preservatives. While elution within 24 h of filtration is recommended, if storage or shipping is required then this preservative mixture can help preserve sample integrity. Addition of an antibiotic cocktail containing cephapirin, gentamicin, and Proclin? 300 increased recovery after storage at 4 and 25 °C, when compared to storage with no antibiotics. The antibiotic cocktail can aid sample preservation if access to appropriate antibiotics storage is available and sample cold chain is unreliable. This study demonstrated that the use of preservatives or antibiotics is a simple, cost-effective method to improve virus detection from ViroCap cartridge filters over time.  相似文献   
38.
Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O3]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O3] on crop ecosystem energy fluxes and water use. Elevated [O3] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 °C.  相似文献   
39.
Laser printers are one of the common indoor equipment in schools, offices, and various other places. Laser printers have recently been identified as a potential source of indoor air pollution. This study examines the characteristics of ultrafine particles (UFPs, diameter <100 nm) and volatile organic compounds (VOCs) emitted from laser printers housed in a commercial printing center. The results indicated that apart from the printer type, the age of printers, and the number of pages printed, the characteristics of UFPs emitted from printers also depend on indoor ventilation conditions. It was found that at reduced ventilation rates of indoor air, there was a rise in the number concentration of UFPs in the printing center. Interestingly, the contribution of UFPs to the total number of submicrometer-sized particles was observed to be higher at a sampling point far away from the printer than the one in the immediate vicinity of the printer. Black carbon (BC) measurements showed a good correlation (rs = 0.82) with particles in the size range of 100-560 nm than those with diameters less than 100 nm (rs = 0.33 for 50-100 nm, and rs = -0.19 for 5.6-50 nm particles). Measurements of VOCs in the printing center showed high levels of m-, o-, and p-xylene, styrene, and ethylbenzenes during peak hours of printing. Although toluene was found in higher levels, its concentration decreased during peak hours compared to those during nonoperating hours of the printing center.  相似文献   
40.
Abstract

Apportionment of primary and secondary pollutants during the summer 2001 Pittsburgh Air Quality Study (PAQS) is reported. Several sites were included in PAQS, with the main site (the supersite) adjacent to the Carnegie Mellon University campus in Schenley Park. One of the additional sampling sites was located at the National Energy Technology Laboratory, located ~18 km southeast of downtown Pittsburgh. Fine particulate matter (PM2.5) mass, gas-phase volatile organic material (VOM), particulate semivolatile and nonvolatile organic material (NVOM), and ammonium sulfate were apportioned at the two sites into their primary and secondary contributions using the U.S. Environmental Protection Agency UNMIX 2.3 multivariate receptor modeling and analysis software. A portion of each of these species was identified as originating from gasoline and diesel primary mobile sources. Some of the organic material was formed from local secondary transformation processes, whereas the great majority of the secondary sulfate was associated with regional transformation contributions. The results indicated that the diurnal patterns of secondary gas-phase VOM and particulate semivolatile and NVOM were not correlated with secondary ammonium sulfate contributions but were associated with separate formation pathways. These findings are consistent with the bulk of the secondary ammonium sulfate in the Pittsburgh area being the result of contributions from distant transport and, thus, decoupled from local activity involving organic pollutants in the metropolitan area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号