首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   715篇
  免费   14篇
  国内免费   12篇
安全科学   32篇
废物处理   29篇
环保管理   195篇
综合类   51篇
基础理论   183篇
污染及防治   175篇
评价与监测   39篇
社会与环境   27篇
灾害及防治   10篇
  2022年   7篇
  2021年   10篇
  2020年   8篇
  2019年   8篇
  2018年   17篇
  2017年   11篇
  2016年   22篇
  2015年   15篇
  2014年   21篇
  2013年   88篇
  2012年   25篇
  2011年   34篇
  2010年   33篇
  2009年   28篇
  2008年   36篇
  2007年   35篇
  2006年   35篇
  2005年   21篇
  2004年   22篇
  2003年   28篇
  2002年   23篇
  2001年   11篇
  2000年   15篇
  1999年   12篇
  1998年   5篇
  1997年   12篇
  1996年   11篇
  1995年   9篇
  1994年   8篇
  1993年   8篇
  1992年   11篇
  1991年   9篇
  1990年   5篇
  1989年   9篇
  1988年   5篇
  1987年   9篇
  1986年   5篇
  1985年   7篇
  1984年   7篇
  1983年   6篇
  1982年   9篇
  1981年   6篇
  1980年   5篇
  1978年   4篇
  1977年   5篇
  1976年   6篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
排序方式: 共有741条查询结果,搜索用时 421 毫秒
241.
Export of agricultural nutrients and sediment to lakes and oceans is of great environmental concern in many agricultural watersheds. Recent years have seen efforts to reduce loads through agricultural practices such as conservation tillage, efficient fertilization, and reservation of erodible areas. Monitoring the efficacy of such efforts is complicated by the fact they take place against a varying climatic and hydrologic background. In this study, statistical analysis was used to identify those climatic, hydrologic, and agricultural variables that best explained variations in nitrate, phosphorus, and total suspended solids over the period 1976-1995 in two large agricultural watersheds that feed Lake Erie, those of the Maumee and Sandusky Rivers. The dominant variable was stream discharge; after curvefits to remove its influence, the residual loads were tested via stepwise linear regression to reveal the most significant explanatory variables. Loads of nitrate, total suspended solids, and total phosphorus tended to decrease when previous months were wet, except in the summer, and to decrease when snow cover was extensive. It is speculated that stores of nitrate in the soil were lost during wet periods through increased crop uptake and/or leaching. Nitrogen fertilizer application in the Maumee watershed decreased following dry periods, but not enough to decrease stream loads. Soluble reactive phosphorus loads were negatively correlated to conservation tillage and reserves, and positively correlated to fertilizer and manure sources. Results for total phosphorus were similar to those for total suspended solids, on which most transported phosphorus is adsorbed.  相似文献   
242.
ABSTRACT: Many water bodies within the United States are contaminated by non‐point source (NPS) pollution, which is defined as those materials posing a threat to water quality arising from a number of individual sources and diffused through hydrologic processes. One such NPS pollutant that is of critical concern are pathogens derived from animal wastes, including humans. The potential presence of pathogens is identified by testing the water for fecal conform, a bacteria also associated with animal wastes. Water contaminated by animal wastes are most often associated with urban and agricultural areas, thus it is postulated that by utilizing land cover indicators, those water bodies that may be at risk of fecal coliform contamination may be identified. This study utilizes land cover information derived from the Multi‐Resolution Land Characterization (MRLC) project to analyze fecal coliform contamination in South Carolina. Also utilized are 14 digit hydro‐logic unit code (HUC) watersheds of the state, a digital elevation model, and test point data stating whether fecal coliform levels exceeded State Water Quality Standards. Proportions of the various land covers are identified within the individual watersheds and then analyzed using a logistic regression. The results reveal that watersheds with large proportions of urban land cover and agriculture on steep slopes had a very high probability of being impaired. (KEY TERMS: Geographic Information Systems; land use planning; nonpoint source pollution; statistical analysis; water quality; watershed management.)  相似文献   
243.
A fundamental way in which animal-dispersed plants can influence the viability and distribution of dispersed seeds is through control of retention time in the guts of dispersers. Using two species of wild chilies and their dispersers, we examined how chemical and physical properties of fruits and seeds mediate this interaction. Capsicum chacoense is polymorphic for pungency, occurs in Bolivia, and is dispersed mostly by elaenias. Capsicum annuum is not polymorphic, occurs in Arizona (USA), and is dispersed mostly by thrashers. We first tested whether capsaicin, the substance responsible for the pungency of chilies, affects gut retention time of seeds in primary dispersers. Capsaicin slowed gut passage of seeds but did so in a manner that differed greatly between bird species because the constipative effects of capsaicin occurred only after an 80-minute time lag. Elaenias in Bolivia held only 6% of C. chacoense seeds for > 80 minutes, whereas thrashers in Arizona held 78% of C. annuum seeds for > 80 minutes. Next we examined the effects of retention time on seed viability and germination. Increased retention resulted in a greater proportion of seeds germinating in C. annuum, had no effects on non-pungent C. chacoense, and had negative effects on pungent C. chacoense. These divergent effects are explained by differences in seed coat morphology: seed coats of pungent C. chacoense are 10-12% thinner than those of the other two types of seeds. Thus, longer retention times damaged seeds with the thinnest seed coats. In C. annuum, seed viability remained high regardless of retention time, but germination increased with retention, suggesting a role for scarification. Thus, in C. annuum, fruit chemistry appears well matched with seed morphology and disperser physiology: capsaicin extends gut retention for most seeds, resulting in greater seed scarification and higher germination rates. Increased retention of pungent C. chacoense seeds is detrimental, but because the primary consumers have short retention times, capsaicin slows only a small proportion of seeds, minimizing negative effects. These results illustrate the importance of context in studies of fruit secondary metabolites. The same chemical can have different impacts on plant fitness depending on its morphological, physiological, and ecological context.  相似文献   
244.
Conservation practices are implemented on farm fields in the USA through Farm Bill programs; however, there is a need for greater verification that these practices provide environmental benefits (e.g., water quality). This study was conducted to assess the impact of Farm Bill eligible conservation practices on soluble P (SP) and total P (TP) losses from four fields that were monitored between 2004 and 2013. No-tillage doubled SP loading compared to rotational tillage (e.g., tilled only before planting corn); however, no-tillage decreased TP loading by 69 % compared to rotational tillage. Similarly, grassed waterways were shown to increase SP loads, but not TP loads. A corn–soybean–wheat–oat rotation reduced SP loads by 85 % and TP loads by 83 % compared to the standard corn–soybean rotation in the region. We can potentially attain TP water quality goals using these Farm Bill practices; however, additional strategies must be employed to meet these goals for SP.  相似文献   
245.
246.
The international development community is off-track from meeting targets for alleviating global malnutrition. Meanwhile, there is growing consensus across scientific disciplines that fish plays a crucial role in food and nutrition security. However, this ‘fish as food’ perspective has yet to translate into policy and development funding priorities. We argue that the traditional framing of fish as a natural resource emphasizes economic development and biodiversity conservation objectives, whereas situating fish within a food systems perspective can lead to innovative policies and investments that promote nutrition-sensitive and socially equitable capture fisheries and aquaculture. This paper highlights four pillars of research needs and policy directions toward this end. Ultimately, recognizing and working to enhance the role of fish in alleviating hunger and malnutrition can provide an additional long-term development incentive, beyond revenue generation and biodiversity conservation, for governments, international development organizations, and society more broadly to invest in the sustainability of capture fisheries and aquaculture.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01451-4) contains supplementary material, which is available to authorized users.  相似文献   
247.
Protected areas are designated to protect species and other features known to be present at the time of designation, but over time the information about the presence of protected species may change and this should call for a continued review of conservation objectives. Published scientific literature is one of the possible information sources that would trigger a review of conservation objectives. We studied how published data on new discoveries of protected animal species were taken into account by the nature conservation authorities in updating species lists of Natura 2000 sites in the European Union, which are the basis for conservation planning at the site-level. Over the period studied (2000–2011) only 40 % of published new protected species records were recognized by the authorities. The two main reasons for this seem to be a reliance on other sources of information by authorities and the difficulty in finding relevant information in scientific papers. The latter is because published faunistic information is very fragmented among different journals, and often insufficient in details. We recommend better cooperation between authors, publishers, and nature conservation authorities in terms of information presentation, publishing policy, and a regular review of published information.  相似文献   
248.
Hatcheries have long been used in an attempt to mitigate for declines in wild stocks of Pacific salmon (Oncorhynchus spp.), though the conservation benefit of hatcheries is a topic of ongoing debate. Irrespective of conservation benefits, a fundamental question is whether hatcheries will be able to function as they have in the past given anticipated future climate conditions. To begin to answer this question, we developed a deterministic modeling framework to evaluate how climate change may affect hatcheries that rear Pacific salmon. The framework considers the physiological tolerances for each species, incorporates a temperature-driven growth model, and uses two metrics commonly monitored by hatchery managers to determine the impacts of changes in water temperature and availability on hatchery rearing conditions. As a case study, we applied the model to the US Fish and Wildlife Service’s Winthrop National Fish Hatchery. We projected that hatchery environmental conditions remained within the general physiological tolerances for Chinook salmon in the 2040s (assuming A1B greenhouse gas emissions scenario), but that warmer water temperatures in summer accelerated juvenile salmon growth. Increased growth during summer coincided with periods when water availability should also be lower, thus increasing the likelihood of physiological stress in juvenile salmon. The identification of these climate sensitivities led to a consideration of potential mitigation strategies such as chilling water, altering rations, or modifying rearing cycles. The framework can be refined with new information, but in its present form, it provides a consistent, repeatable method to assess the vulnerability of hatcheries to predicted climate change.  相似文献   
249.
Mitigation and Adaptation Strategies for Global Change - Soils hold the largest pool of organic carbon (C) on Earth; yet, soil organic carbon (SOC) reservoirs are not well represented in climate...  相似文献   
250.
Injection of cattle and swine slurries can provide soil incorporation in no-till and perennial forage production. Injection is expected to substantially reduce N loss due to ammonia (NH3) volatilization, but a portion of that N conservation may be offset by greater denitrification and leaching losses. This paper reviews our current knowledge of the impacts of subsurface application of cattle and swine slurries on the N balance and outlines areas where a greater understanding is needed. Several publications have shown that liquid manure injection using disk openers, chisels, or tines can be expected to Sreduce NH, emissions by at least 40%, and often by 90% or more, relative to broadcast application. However, the limited number of studies that have also measured denitrification losses have shown that increased denitrification with subsurface application can offset as much as half of the N conserved by reducing NH3 emissions. Because the greenhouse gas nitrous oxide (N2O) is one product of denitrification, the possible increases in N2O emission with injection require further consideration. Subsurface manure application generally does not appear to increase leaching potential when manure is applied at recommended rates. Plant utilization of conserved N was shown in only a portion of the published studies, indicating that further work is needed to better synchronize manure N availability and crop uptake. At this time in the United States, the economic and environmental benefits from reducing losses of N as NH3 are expected to outweigh potential liability from increases in denitrification with subsurface manure application. To fully evaluate the trade-offs among manure application methods, a detailed environmental and agricultural economic assessment is needed to estimate the true costs of potential increases in NO2O emissions with manure injection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号