首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12411篇
  免费   147篇
  国内免费   276篇
安全科学   377篇
废物处理   510篇
环保管理   1923篇
综合类   2396篇
基础理论   2857篇
环境理论   7篇
污染及防治   2779篇
评价与监测   827篇
社会与环境   1077篇
灾害及防治   81篇
  2023年   70篇
  2022年   154篇
  2021年   130篇
  2020年   90篇
  2019年   132篇
  2018年   184篇
  2017年   217篇
  2016年   294篇
  2015年   231篇
  2014年   336篇
  2013年   1168篇
  2012年   413篇
  2011年   542篇
  2010年   426篇
  2009年   476篇
  2008年   550篇
  2007年   596篇
  2006年   438篇
  2005年   410篇
  2004年   413篇
  2003年   416篇
  2002年   375篇
  2001年   400篇
  2000年   289篇
  1999年   164篇
  1998年   151篇
  1997年   132篇
  1996年   168篇
  1995年   227篇
  1994年   205篇
  1993年   169篇
  1992年   163篇
  1991年   153篇
  1990年   146篇
  1989年   124篇
  1988年   137篇
  1987年   127篇
  1986年   104篇
  1985年   108篇
  1984年   101篇
  1983年   107篇
  1982年   114篇
  1981年   111篇
  1980年   73篇
  1979年   79篇
  1977年   68篇
  1973年   58篇
  1972年   64篇
  1914年   71篇
  1913年   107篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
551.
Gebremichael, Mekonnen, Emmanouil N. Anagnostou, and Menberu M. Bitew, 2010. Critical Steps for Continuing Advancement of Satellite Rainfall Applications for Surface Hydrology in the Nile River Basin. Journal of the American Water Resources Association (JAWRA) 46(2):361-366. DOI: 10.1111/j.1752-1688.2010.00428.x. Abstract: Given the increasingly higher resolution and data accessibility, satellite precipitation products could be useful for hydrological application in the Nile River Basin, which is characterized by lack of reasonably dense hydrological in situ sensors and lack of access to the existing dataset. However, in the absence of both extreme caution and research results for the Nile basin, the satellite rainfall (SR) products may not be used, or may even be used erroneously. We identify two steps that are critical to enhance the value of SR products for hydrological applications in the Nile basin. The first step is to establish representative validation sites in the Nile basin. The validation site will help to quantify the errors in the different kinds of SR products, which will be used to select the best products for the Nile basin, include the errors in decision making, and design strategies to minimize the errors. Using rainfall measurements collected from the unprecedented high-density rain gauge network over a small region within the Nile basin, we indicate that SR estimates could be subject to significant errors, and quantification of estimation errors by way of establishing validation sites is critically important in order to use the SR products. The second step is to identify the degree of hydrologic model complexity required to obtain more accurate hydrologic simulation results for the Nile basin when using SR products as input. The level of model complexity may depend on basin size and SR algorithm, and further research is needed to spell out this dependence for the Nile basin.  相似文献   
552.
Volatile organic compounds (VOCs) have been the focus of interest to understand atmospheric processes and their consequences in formation of ozone or aerosol particles; therefore, VOCs contribute to climate change. In this study, biogenic VOCs (BVOCs) emitted from Fagus sylvatica L. trees were measured in a dynamic enclosure system. In total 18 compounds were identified: 11 monoterpenes (MT), an oxygenated MT, a homoterpene (C14H18), 3 sesquiterpenes (SQT), isoprene and methyl salicylate. The frequency distribution of the compounds was tested to determine a relation with the presence of the aphid Phyllaphis fagi L. It was found that linalool, (E)-β-ocimene, α-farnesene and a homoterpene identified as (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), were present in significantly more samples when infection was present on the trees. The observed emission spectrum from F. sylvatica L. shifted from MT to linalool, α-farnesene, (E)-β-ocimene and DMNT due to the aphid infection. Sabinene was quantitatively the most prevalent compound in both, non-infected and infected samples. In the presence of aphids α-farnesene and linalool became the second and third most important BVOC emitted. According to our investigation, the emission fingerprint is expected to be more complex than commonly presumed.  相似文献   
553.
A three dimensional chemical transport model (PMCAMx) is applied to the Mexico City Metropolitan Area (MCMA) in order to simulate the chemical composition and mass of the major PM1 (fine) and PM1–10 (coarse) inorganic components and determine the effect of mineral dust on their formation. The aerosol thermodynamic model ISORROPIA-II is used to explicitly simulate the effect of Ca, Mg, and K from dust on semi-volatile partitioning and water uptake. The hybrid approach is applied to simulate the inorganic components, assuming that the smallest particles are in thermodynamic equilibrium, while describing the mass transfer to and from the larger ones. The official MCMA 2004 emissions inventory with improved dust and NaCl emissions is used. The comparison between the model predictions and measurements during a week of April of 2003 at Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA) “Supersite” shows that the model reproduces reasonably well the fine mode composition and its diurnal variation. Sulfate predicted levels are relatively uniform in the area (approximately 3 μg m?3), while ammonium nitrate peaks in Mexico City (approximately 7 μg m?3) and its concentration rapidly decreases due to dilution and evaporation away from the urban area. In areas of high dust concentrations, the associated alkalinity is predicted to increase the concentration of nitrate, chloride and ammonium in the coarse mode by up to 2 μg m?3 (a factor of 10), 0.4 μg m?3, and 0.6 μg m?3 (75%), respectively. The predicted ammonium nitrate levels inside Mexico City for this period are sensitive to the physical state (solid versus liquid) of the particles during periods with RH less than 50%.  相似文献   
554.
The interpretation of thermodenuder (TD) data often relies on the assumption that thermodynamic equilibrium is reached inside the instrument. We modeled the evaporation of three organic aerosol types (adipic acid, α-pinene SOA and aged OA) inside a thermodenuder with a mass transfer model, and calculated equilibration time scales for these systems at realistic conditions. The equilibrium times varied from less than a second to several hours, decreasing with increasing aerosol concentrations, decreasing particle sizes, decreasing volatilities and increasing mass accommodation coefficients. The results indicate that generally TDs measure particle evaporation rates rather than equilibria, and time-dependent modeling of the evaporation is usually needed to interpret the data. Measurements at varying residence times and temperatures, on the other hand, are desirable to investigate the equilibration of the studied aerosol and decouple the kinetic effects from the effects caused by the thermodynamic properties of the aerosol. Organic aerosol is likely to be further from equilibrium under typical field conditions compared with laboratory data. When determining the aerosol properties from TD data, assuming incorrectly equilibrium results in under-prediction of the vaporization enthalpy of the evaporating species. Similar under-estimation is predicted if multicomponent aerosols are approximated with single-component properties.  相似文献   
555.
Based on environmental monitoring data in 93 major cities and meteorological records at 398 weather stations in China from 1981 to 2007, total suspended particle (TSP) concentration, the intensity of dustfall, and sand and dust storm frequency (Fd) were analysed. During the past 27 years, the annual average TSP concentration (CTSP) in 93 cities was 402 μg m?3. Annual average CTSP decreased from the north to the south and from inland to the coast areas with a peak value of 628.8 μg m?3 in Lanzhou. In the 1980s, 1990s and 2000s, annual average CTSP was 628.7, 319.2, and 250.1 μg m?3, respectively. Annual average intensity of dustfall (Id) was 240.5 t km?2 a?1, decreased from northern to southern China and from inland to the coast areas with the maximum value of 717.2 t km?2 a?1 in Baotou. In the 1980s, 1990s and 2000s, annual average Id was 334.8, 220.9, 146 t km?2 a?1 respectively. Annual average Id in the Loess Plateau region was commonly higher than 200 t km?2 a?1. The annual average Fd decreased from arid regions in northwestern China to humid areas in southeastern China with two sand and sand storm centers existing in Xinjiang Taklamakan Desert and western Inner Mongolia. The annual average Fd in the 1980s, 1990s, 2000s was 16, 8, 6 days respectively, decreased steadily from 18 days in 1981–5 days in 2007. Annual average Id had a positive linear relation to annual average CTSP (R2 = 0.96). Annual average Fd had a positive relation with annual average CTSP (R2 = 0.97) as well as annual average Id (R2 = 0.94). TSP was the chief pollutant influencing Air Pollution Index (API) in northern China in spring and winter seasons. Sand and dust storm might be a major factor affecting the temporal variability and spatial distribution of TSP and dustfall in China.  相似文献   
556.
Using proton transfer reaction mass spectrometry equipped with a quadrupol mass analyser to quantify the biosphere-atmosphere exchange of volatile organic compounds (VOC), concentrations of different VOC are measured sequentially. Depending on how many VOC species are targeted and their respective integration times, each VOC is measured at repeat rates on the order of a few seconds. This represents an order of magnitude longer sample interval compared to the standard eddy covariance (EC) method (5–20 Hz sampling rates). Here we simulate the effect of disjunct sampling on EC flux estimates by decreasing the time resolution of CO2 and H2O concentrations measured at 20 Hz above a temperate mountain grassland in the Austrian Alps. Fluxes for one month are calculated with the standard EC method and compared to fluxes calculated based on the disjunct data (1, 3 and 5 s sampling rates) using the following approaches: i) imputation of missing concentrations based on the nearest neighbouring samples (iDECnn), ii) imputation by linear interpolation (iDECli), and iii) virtual disjunct EC (vDEC), i.e. flux calculation based solely on the disjunct concentrations. It is shown that the two imputation methods result in additional low-pass filtering, longer lag times (as determined with the maximum cross-correlation method) and a flux loss of 3–30% as compared to the standard EC method. A novel procedure, based on a transfer function approach, which specifically corrects for the effect of data treatment, was developed, resulting in improved correspondence (to within 2%). The vDEC method yields fluxes which approximate the true (20 Hz) fluxes to within 3–7% and it is this approach we recommend because it involves no additional empirical corrections. The only drawback of the vDEC method is the noisy nature of the cross-correlations, which poses problems with lag determination – practical approaches to overcome this limitation are discussed.  相似文献   
557.
The emission-exposure and exposure-response (toxicity) relationships are different for different emission source categories of anthropogenic primary fine particulate matter (PM2.5). These variations have a potentially crucial importance in the integrated assessment, when determining cost-effective abatement strategies. We studied the importance of these variations by conducting a sensitivity analysis for an integrated assessment model. The model was developed to estimate the adverse health effects to the Finnish population attributable to primary PM2.5 emissions from the whole of Europe. The primary PM2.5 emissions in the whole of Europe and in more detail in Finland were evaluated using the inventory of the European Monitoring and Evaluation Programme (EMEP) and the Finnish Regional Emission Scenario model (FRES), respectively. The emission-exposure relationships for different primary PM2.5 emission source categories in Finland have been previously evaluated and these values incorporated as intake fractions into the integrated assessment model. The primary PM2.5 exposure-response functions and toxicity differences for the pollution originating from different source categories were estimated in an expert elicitation study performed by six European experts on air pollution health effects. The primary PM2.5 emissions from Finnish and other European sources were estimated for the population of Finland in 2000 to be responsible for 209 (mean, 95% confidence interval 6–739) and 357 (mean, 95% CI 8–1482) premature deaths, respectively. The inclusion of emission-exposure and toxicity variation into the model increased the predicted relative importance of traffic related primary PM2.5 emissions and correspondingly, decreased the predicted relative importance of other emission source categories. We conclude that the variations of emission-exposure relationship and toxicity between various source categories had significant impacts for the assessment on premature deaths caused by primary PM2.5.  相似文献   
558.
In subsistence farming systems of the developing world, adoption of resource-conserving practices such as integrated pest management (IPM) is often strikingly low. This has partially been ascribed to researchers’ limited understanding of how technologies develop at the interface of the systems’ social and ecological components. In Honduras (Central America), there exists concern about limited adoption and diffusion of IPM technologies in certain smallholder production systems. In this study, we determine social and ecological drivers of IPM adoption in subsistence maize production in the country’s hillside environment. Honduran small-scale maize production is typified by a key insect pest (the fall armyworm, Spodoptera frugiperda) being partly kept at bay through action of a diverse natural enemy complex, including ants, social wasps, carabid beetles, and spiders. Local agricultural landscapes, primarily shaped through shifting cultivation, provide key resources to maintain this natural enemy diversity. These local ecological conditions and related natural enemy abundance strongly influence farmers’ agroecological knowledge and pest management practices. In the meantime, farmer practices are also affected by local communication networks, which help validate and spread IPM concepts and technologies. Based on our findings, we advocate a holistic approach to improve IPM extension through mapping of agroecological opportunities, visualization of regional patterns in farmer knowledge, and associated priority setting. Local IPM capacity could be built through institutional strengthening and adaptive comanagement, while IPM training should be linked with natural resource management initiatives. These approaches may eventually improve the way IPM is delivered to small-scale farmers who operate in the ecologically diverse environments of the tropics.  相似文献   
559.
Sea-level rise is a major threat facing the Coral Triangle countries in the twenty-first century. Assessments of vulnerability and adaptation that consider the interactions among natural and social systems are critical to identifying habitats and communities vulnerable to sea-level rise and for supporting the development of adaptation strategies. This paper presents such an assessment using the DIVA model and identifies vulnerable coastal regions and habitats in Coral Triangle countries at national and sub-national levels (administrative provinces). The following four main sea-level rise impacts are assessed in ecological, social and economic terms over the twenty-first century: (1) coastal wetland change, (2) increased coastal flooding, (3) increased coastal erosion, and (4) saltwater intrusion into estuaries and deltas. The results suggest that sea-level rise will significantly affect coastal regions and habitats in the Coral Triangle countries, but the impacts will differ across the region in terms of people flooded annually, coastal wetland change and loss, and damage and adaptation costs. Indonesia is projected to be most affected by coastal flooding, with nearly 5.9 million people expected to experience flooding annually in 2100 assuming no adaptation. However, if adaptation is considered, this number is significantly reduced. By the end of the century, coastal wetland loss is most significant for Indonesia in terms of total area lost, but the Solomon Islands are projected to experience the greatest relative loss of coastal wetlands. Damage costs associated with sea-level rise are highest in the Philippines (US $6.5 billion/year) and lowest in the Solomon Islands (US $70,000/year). Adaptation is estimated to reduce damage costs significantly, in particular for the Philippines, Indonesia, and Malaysia (between 68 and 99%). These results suggest that the impacts of sea-level rise are likely to be widespread in the region and adaptation measures must be broadly applied.  相似文献   
560.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号