首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31034篇
  免费   323篇
  国内免费   284篇
安全科学   906篇
废物处理   1216篇
环保管理   4349篇
综合类   4552篇
基础理论   8372篇
环境理论   8篇
污染及防治   8541篇
评价与监测   1936篇
社会与环境   1549篇
灾害及防治   212篇
  2022年   221篇
  2021年   263篇
  2020年   188篇
  2019年   272篇
  2018年   420篇
  2017年   427篇
  2016年   685篇
  2015年   521篇
  2014年   789篇
  2013年   2586篇
  2012年   943篇
  2011年   1278篇
  2010年   1027篇
  2009年   1114篇
  2008年   1353篇
  2007年   1417篇
  2006年   1281篇
  2005年   1024篇
  2004年   1095篇
  2003年   1006篇
  2002年   976篇
  2001年   1268篇
  2000年   901篇
  1999年   529篇
  1998年   434篇
  1997年   386篇
  1996年   439篇
  1995年   469篇
  1994年   462篇
  1993年   408篇
  1992年   405篇
  1991年   363篇
  1990年   411篇
  1989年   397篇
  1988年   340篇
  1987年   305篇
  1986年   279篇
  1985年   281篇
  1984年   329篇
  1983年   326篇
  1982年   322篇
  1981年   308篇
  1980年   248篇
  1979年   275篇
  1978年   221篇
  1977年   200篇
  1975年   189篇
  1974年   166篇
  1973年   187篇
  1972年   217篇
排序方式: 共有10000条查询结果,搜索用时 578 毫秒
741.
As part of the program monitoring the ecosystem health of Moreton Bay, Queensland, Australia, we developed a means for assessing ecosystem health that allows quantitative evaluation and spatial representations of the assessments. The management objectives for achieving ecosystem health were grouped into ecosystem objectives, water quality objectives, and human health objectives. For the first two groups, aspects of the ecosystem (e.g., trophic status) were identified, and an indicator was chosen for each aspect. Reference values for each indicator were derived from management objectives and compared with the mapped survey values. Subregions for which the indicator statistic was equal to or better than the assigned reference value are referred to as “compliant zones.” High-resolution surface maps were created from spatial predictions on a fine hexagonal grid for each of the indicators. Eight reporting subregions were established based on the depth and predicted residence times of the water. Within each reporting subregion, the proportion that was compliant was calculated. These results then were averaged to create an integrated ecosystem health index. The ratings by a team of ecosystem experts and the calculated ecosystem health indices had good correspondence, providing assurance that the approach was internally consistent, and that the management objectives covered the relevant biologic issues for the region. This method of calculating and mapping ecosystem health, relating it directly to management objectives, may have widespread applicability for ecosystem assessment.  相似文献   
742.
743.
The ground water denitrification capacity of riparian zones in deep soils, where substantial ground water can flow through low-gradient stratified sediments, may affect watershed nitrogen export. We hypothesized that the vertical pattern of ground water denitrification in riparian hydric soils varies with geomorphic setting and follows expected subsurface carbon distribution (i.e., abrupt decline with depth in glacial outwash vs. negligible decline with depth in alluvium). We measured in situ ground water denitrification rates at three depths (65, 150, and 300 cm) within hydric soils at four riparian sites (two per setting) using a 15N-enriched nitrate "push-pull" method. No significant difference was found in the pattern and magnitude of denitrification when grouping sites by setting. At three sites there was no significant difference in denitrification among depths. Correlations of site characteristics with denitrification varied with depth. At 65 cm, ground water denitrification correlated with variables associated with the surface ecosystem (temperature, dissolved organic carbon). At deeper depths, rates were significantly higher closer to the stream where the subsoil often contains organically enriched deposits that indicate fluvial geomorphic processes. Mean rates ranged from 30 to 120 microg N kg(-1) d(-1) within 10 m versus <1 to 40 microg N kg(-1) d(-1) at >30 m from the stream. High denitrification rates observed in hydric soils, down to 3 m within 10 m of the stream in both alluvial and glacial outwash settings, argue for the importance of both settings in evaluating the significance of riparian wetlands in catchment-scale N dynamics.  相似文献   
744.
Beef cattle feedlots face serious environmental challenges associated with manure management, including greenhouse gas, odor, NH3, and dust emissions. Conditions affecting emissions are poorly characterized, but likely relate to the variability of feedlot surface moisture and manure contents, which affect microbial processes. Odor compounds, greenhouse gases, nitrogen losses, and dust potential were monitored at six moisture contents (0.11, 0.25, 0.43, 0.67, 1.00, and 1.50 g H2O g(-1) dry matter [DM]) in three artificial feedlot soil mixtures containing 50, 250, and 750 g manure kg(-1) total (manure + soil) DM over a two-week period. Moisture addition produced three microbial metabolisms: inactive, aerobic, and fermentative at low, moderate, and high moisture, respectively. Manure content acted to modulate the effect of moisture and enhanced some microbial processes. Greenhouse gas (CO2, N2O, and CH4) emissions were dynamic at moderate to high moisture. Malodorous volatile fatty acid (VFA) compounds did not accumulate in any treatments, but their persistence and volatility varied depending on pH and aerobic metabolism. Starch was the dominant substrate fueling both aerobic and fermentative metabolism. Nitrogen losses were observed in all metabolically active treatments; however, there was evidence for limited microbial nitrogen uptake. Finally, potential dust production was observed below defined moisture thresholds, which were related to manure content of the soil. Managing feedlot surface moisture within a narrow moisture range (0.2-0.4 g H2O g(-1) DM) and minimizing the accumulation of manure produced the optimum conditions that minimized the environmental impact from cattle feedlot production.  相似文献   
745.
The moisture and manure contents of soils at cattle feedlot surfaces vary spatiotemporally and likely are important factors in the persistence of Escherichia coli O157 in these soils. The impacts of water content (0.11-1.50 g H2O g(-1) dry feedlot surface material [FSM]) and manure level (5, 25, and 75% dry manure in dry FSM) on E. coli O157:H7 in feedlot soils were evaluated. Generally, E. coli O157:H7 numbers either persisted or increased at all but the lowest moisture levels examined. Manure content modulated the effect of water on E. coli growth; for example, at water content of 0.43 g H2O g(-1) dry FSM and 25% manure, E. coli O157:H7 increased by 2 log10 colony forming units (CFU) g(-1) dry FSM in 3 d, while at 0.43 g H2O g(-1) dry FSM and 75% manure, populations remained stable over 14 d. Escherichia coli and coliform populations responded similarly. In a second study, the impacts of cycling moisture levels and different drying rates on naturally occurring E. coli O157 in feedlot soils were examined. Low initial levels of E. coli O157 were reduced to below enumerable levels by 21 d, but indigenous E. coli populations persisted at >2.50 log10 CFU g(-1) dry FSM up to 133 d. We conclude that E. coli O157 can persist and may even grow in feedlot soils, over a wide range of water and manure contents. Further investigations are needed to determine if these variables can be manipulated to reduce this pathogen in cattle and the feedlot environment.  相似文献   
746.
Sustainable land application: an overview   总被引:1,自引:0,他引:1  
Man has land-applied societal nonhazardous wastes for centuries as a means of disposal and to improve the soil via the recycling of nutrients and the addition of organic matter. Nonhazardous wastes include a vast array of materials, including manures, biosolids, composts, wastewater effluents, food-processing wastes, industrial by-products; these are collectively referred to herein as residuals. Because of economic restraints and environmental concerns about land-filling and incineration, interest in land application continues to grow. A major lesson that has been learned, however, is that the traditional definition of land application that emphasizes applying residuals to land in a manner that protects human and animal health, safeguards soil and water resources, and maintains long-term ecosystem quality is incomplete unless the earning of public trust in the practices is included. This overview provides an introduction to a subset of papers and posters presented at the conference, "Sustainable Land Application," held in Orlando, FL, in January 2004. The USEPA, USDA, and multiple national and state organizations with interest in, and/or responsibilities for, ensuring the sustainability of the practice sponsored the conference. The overriding conference objectives were to highlight significant developments in land treatment theory and practice, and to identify future research needs to address critical gaps in the knowledge base that must be addressed to ensure sustainable land application of residuals.  相似文献   
747.
The effects of prescribed burning on forage abundance and suitability for elk (Cervus elaphus) during the snow-free season was evaluated in east-central Banff National Park, Canada. Six coniferous forest and mixed shrub-herb plant communities (n=144 plots), and 5223ha of burned (n=131) vegetation <12 years old were sampled using a stratified semi-random design. Sampling units represented various combinations of vegetation, terrain conditions, and stand ages that were derived from digital biophysical data, with plant communities the basic unit of analysis. Burning coniferous forest stands reduced woody biomass, and increased herbaceous forage from 146 to 790 kg/ha. Increases commonly occurred in the percent cover of hairy wild rye (Leymus innovatus (Beal) Pigler) and fireweed (Chamerion angustifolium (L.) Holub.). The herbaceous components of mixed shrub-herb communities increased from 336-747 kg/ha to 517-1104 kg/ha in response to burning (P<0.025, Mann-Whitney U-test). Browse biomass (mostly Salix spp. and Betula nana L.) increased >or=220% (P相似文献   
748.
Recycling operations have become one of the primary strategies for waste management, worldwide. Especially, recycling operations are viewed as among the most effective techniques for reducing the amount of municipal solid waste disposed at landfill sites. Botswana's environmental policy on recycling stipulates, among others, that all waste management authorities should provide information on the classification and quantities of controlled waste targeted for recycling. This paper, therefore, examines the extent to which recycling operations in Botswana have either been conducted in compliance with or in violation of some major environmental requirements as enunciated on statutory guidelines. Compatibility between environmental policies on recycling and actual practice is evaluated focusing on two companies (Dumatau trading and Botswana Tissue) involved in recycling operation. Data from the two companies is complemented by one collected from the Gaborone landfill site. Finally, this study discusses on the role played by various stakeholders in policy formulation and implementation with particular emphasis being placed on a select number of non-governmental organisations (NGO).  相似文献   
749.
There is evidence that degradation of pesticides in simple laboratory systems may differ from that in the field, but it is not clear which of the simplifications inherent in laboratory studies present serious shortcomings. Laboratory experiments evaluated several simplifying assumptions for a clay loam soil and contrasting pesticides. Degradation of cyanazine [2-(4-chloro-6-ethylamino-1,3,5-triazin-2-ylamino)-2-methylpropiononitrile] and bentazone [3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide] at fluctuating temperature and moisture was predicted reasonably well based on parameters derived from degradation under constant conditions. There was a tendency for slower degradation of cyanazine and bentazone in soil aggregates of 3 to 5 mm in diameter (DT50 at 15 degrees C and 40% maximum water holding capacity of 25.1 and 58.2 d, where DT50 is the time for 50% decline of the initial pesticide concentration) than in soil sieved to <3 mm (DT50 of 19.1 and 37.6 d), but the differences were not significant for most datasets. Degradation of cyanazine, isoproturon [3-(4-isopropylphenyl)-1,1-dimethylurea], and chlorotoluron [3-(3-chloro-p-tolyl)-1,1-dimethylurea] was measured in soil amended with different amounts of lignin. The effect of lignin on degradation was small despite considerable differences in sorption. The DT50 values of cyanazine, isoproturon, and chlorotoluron were 16.2, 18.6, and 33.0 d, respectively, in soil without lignin and 19.0, 23.4, and 34.6 d, respectively, in soil amended with 2% lignin. Degradation of bentazone and cyanazine in repacked soil columns was similar under static and flow conditions with 50.1 and 47.2% of applied bentazone and 74.7 and 73.6% of applied cyanazine, respectively, degraded within 20 d of application. Thus, the assumptions underpinning laboratory to field extrapolation tested here were considered to hold for our experimental system. Additional work is required before general conclusions can be drawn.  相似文献   
750.
The accumulation of excess soil phosphorus (P) in watersheds under intensive animal production has been linked to increases in dissolved P concentrations in rivers and streams draining these watersheds. Reductions in water dissolved P concentrations through very strong P sorption reactions may be obtainable after land application of alum-based drinking water treatment residuals (WTRs). Our objectives were to (i) evaluate the ability of an alum-based WTR to reduce Mehlich-3 phosphorus (M3P) and water-soluble phosphorus (WSP) concentrations in three P-enriched Coastal Plain soils, (ii) estimate WTR application rates necessary to lower soil M3P levels to a target 150 mg kg(-1) soil M3P concentration threshold level, and (iii) determine the effects on soil pH and electrical conductivity (EC). Three soils containing elevated M3P (145-371 mg kg(-1)) and WSP (12.3-23.5 mg kg(-1)) concentrations were laboratory incubated with between 0 and 6% WTR (w w(-1)) for 84 d. Incorporation of WTR into the three soils caused a near linear and significant reduction in soil M3P and WSP concentrations. In two soils, 6% WTR application caused a soil M3P concentration decrease to below the soil P threshold level. An additional incubation on the third soil using higher WTR to soil treatments (10-15%) was required to reduce the mean soil M3P concentration to 178 mg kg(-1). After incubation, most treatments had less than a half pH unit decline and a slight increase in soil EC values suggesting a minimal impact on soil quality properties. The results showed that WTR incorporation into soils with high P concentrations caused larger relative reductions in extractable WSP than M3P concentrations. The larger relative reductions in the extractable WSP fraction suggest that WTR can be more effective at reducing potential runoff P losses than usage as an amendment to lower M3P concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号