首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   619篇
  免费   6篇
  国内免费   25篇
安全科学   26篇
废物处理   87篇
环保管理   57篇
综合类   81篇
基础理论   91篇
环境理论   1篇
污染及防治   226篇
评价与监测   58篇
社会与环境   19篇
灾害及防治   4篇
  2023年   10篇
  2022年   8篇
  2021年   10篇
  2020年   7篇
  2019年   11篇
  2018年   20篇
  2017年   31篇
  2016年   28篇
  2015年   18篇
  2014年   25篇
  2013年   58篇
  2012年   33篇
  2011年   48篇
  2010年   34篇
  2009年   45篇
  2008年   43篇
  2007年   41篇
  2006年   42篇
  2005年   30篇
  2004年   31篇
  2003年   14篇
  2002年   15篇
  2001年   13篇
  2000年   7篇
  1999年   4篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有650条查询结果,搜索用时 15 毫秒
571.
A three-dimensional hydrodynamic and water quality model was applied to Lake Paldang, a lake in South Korea that is stratified by incoming flows. The spatial and temporal patterns of phytoplankton growth in this lake were determined from the model. The model was calibrated and verified using data measured under different hydrological conditions. The model results were in reasonable agreement with the field measurements, in both the calibration and verification phases. The distributions of water quality and residence time in the lake and phytoplankton response to changes in nutrient loads were examined with the model, and the influence of the hydrodynamics on phytoplankton response was analyzed. The simulation results indicated that Lake Paldang is an essentially phosphorus-limited system, but that phytoplankton growth is limited by low water temperature and short residence time during the winter and the summer monsoon period, respectively. The results of sensitivity analyses also suggested that the hydrodynamics within the lake may have an indirect influence on phytoplankton responses to changes in the limiting nutrient loads, and that reducing phosphorus loading from Kyoungan Stream should be a high priority policy for controlling algal blooms during the pre- and post-monsoon periods. From this study, it was concluded that the three-dimensional water quality model incorporating hydrodynamic processes could successfully simulate phytoplankton response to changes in nutrient loads and that it could become a useful tool for identifying the essential factors determining phytoplankton growth and for developing the best management policy for algal blooms in Lake Paldang.  相似文献   
572.
A mathematical model was developed to estimate nitrate release from ocher pellets in benthic sediment. Ocher pellets, called “limnomedicine,” consisting of ocher and calcium nitrate were used to suppress phosphorus release from contaminated sediment under anaerobic conditions. The proposed model represents the fate and transport of nitrate released from the pellets, in both the water column and the sediment. Most of the nitrate (83.6%) released from the pellets was consumed in the degradation of organic matter and FeS in the sediment over a period of 12 days. While an increase in pellet dosage helps to accelerate the sediment treatment rate, it also has the effect of increasing the mass of nitrate that diffuses into the water column. Quantitative analysis of these effects using the proposed mathematical model makes it possible to determine the proper pellet dosage based on sediment conditions such as organic matter content.  相似文献   
573.
The microbial leaching process was evaluated for the treatment of synthetic sediments contaminated with cadmium and nickel sulfides. A series of batch leaching experiments was conducted to compare metal solubilization in sediment inoculated with Acidithiobacillus ferrooxidans -inoculated sediments to that in sterile control sediment. The rate and extent of metal solubilization were significantly higher in A. ferrooxidans -inoculated reactors than in acidified sterile reactors. The efficiency of cadmium (Cd) solubilization (80) in the bioleaching process was higher than that of nickel (Ni) solubilization (60). The performance of leaching reactors containing only culture supernatants was comparable to that of A. ferrooxidans -inoculated reactors, indicating that indirect non-contact leaching by the products of microbial metabolism is the predominant mechanism for metal solubilization rather than direct microbial sulfide oxidation. Moreover, the similar (60–75%) extents of Cd2+ leaching with A. ferrooxidans , cell-free filtrate, and Fe3+ suggest that abiotic oxidation of CdS by Fe3+ controls the overall leaching rate, and the role of A.␣ferrooxidans is most likely not to oxidize CdS mineral directly but to regenerate Fe3+ as an oxidant.  相似文献   
574.
Environmental Geochemistry and Health - This review summarizes the mechanisms for desorbing and extracting cesium (Cs+) from clay minerals and soil. Most techniques use ion exchange with acids,...  相似文献   
575.
To recycle polyurethane foam waste generated from electric appliance recycling centers for use as fuel in a gasification process, polyurethane solid refuse fuel fabricated as pellets was analyzed for the characteristics of elemental composition, proximate analysis, heating value, and thermo-gravimetric testing. It has a high heating value of 29.06 MJ/kg with a high content of combustibles, which could be feasibly used in any thermal process. However, the nitrogen content, of up to 7 %, was comparably higher than for other fuels such as coal, biomass, and refuse-derived fuel, and may result in the emission of nitrogenous pollutant gases of HCN and NH3. By conducting gasification experiments on polyurethane solid refuse fuel in a fixed-bed reactor, a syngas with a heating value of 9.76 kJ/m3 and high content of both H2 and CO were produced with good gasification efficiency; carbon conversion 54 %, and cold gas efficiency 60 %. The nitrogenous pollutant gases in syngas were measured at the concentrations of 160 ppm hydrogen cyanide and 40 ppm ammonia, which may have to be reduced using proper cleaning technologies prior to the commercialization of gasification technology for polyurethane waste.  相似文献   
576.
Journal of Material Cycles and Waste Management - Slow pyrolysis is characterized by a low heating rate and high reaction time. The products are bio-char, bio-oil and bio-gas. In bio-oil, there are...  相似文献   
577.
This study focuses on determining the engineering characteristics of asphalt concrete using mineral fillers with recycled waste lime, which is a by-product of the production of soda ash (Na(2)CO(3)). The materials tested in this study were made using a 25%, 50%, 75%, and 100% mixing ratio based on the conventional mineral filler ratio to analyze the possibility of using recycled waste lime. The asphalt concretes, made of recycled waste lime, hydrated lime, and conventional asphalt concrete, were evaluated through their fundamental engineering properties such as Marshall stability, indirect tensile strength, resilient modulus, permanent deformation characteristics, moisture susceptibility, and fatigue resistance. The results indicate that the application of recycled waste lime as mineral filler improves the permanent deformation characteristics, stiffness and fatigue endurance of asphalt concrete at the wide range of temperatures. It was also determined that the mixtures with recycled waste lime showed higher resistance against stripping than conventional asphalt concrete. It was concluded from various test results that a waste lime can be used as mineral filler and, especially, can greatly improve the resistance of asphalt concrete to permanent deformation at high temperatures.  相似文献   
578.

An initial reclamation of the Young Dong coal mine site, located in northeastern South Korea, was completed in 1995. Despite the filling of the adit with limestone, acid rock drainage (ARD) enters Young Dong tributary and is then discharged to Imgok Creek. This ARD carries an average of 500 mg CaCO3/l of mineral acidity, primarily as Fe(II) and Al. Before spring runoff, the flow of Imgok Creek is 3.3–4 times greater than that of the tributary and has an alkalinity of 100 mg CaCO3/l, which is sufficient to eliminate the mineral acidity and raise the pH to about 6.5. From April through September 2008, there were at least two periods of high surface flow that affects the flow of ARD from the adit. Flow of ARD reaches 2.8 m3/min during spring runoff. This raised the concentrations of Fe and Al in the confluence with Imgok Creek. However, by 2 km downstream the pH of the Imgok Creek is 6.5 and only dissolved Fe is above the Korean drinking water criteria (0.30 mg/l). This suggests only a minor impact of Young Dong Creek water on Imgok Creek. Acid digestion of the sediments in Imgok Creek and Young Dong Tributary reveals considerable abundances of heavy metals, which could have a long-term impact on water quality. However, several water-based leaching tests, which better simulate the bioavailable metals pool, released only Al, Fe, Mn, and Zn at concentrations exceeding the criteria for drinking water or aquatic life.

  相似文献   
579.
Two artificial neural networks (ANNs), unsupervised and supervised learning algorithms, were applied to suggest practical approaches for the analysis of ecological data. Four major aquatic insect orders (Ephemeroptera, Plecoptera, Trichoptera, and Coleoptera, i.e. EPTC), and four environmental variables (elevation, stream order, distance from the source, and water temperature) were used to implement the models. The data were collected and measured at 155 sampling sites on streams of the Adour–Garonne drainage basin (South-western France). The modelling procedure was carried out following two steps. First, a self-organizing map (SOM), an unsupervised ANN, was applied to classify sampling sites using EPTC richness. Second, a backpropagation algorithm (BP), a supervised ANN, was applied to predict EPTC richness using a set of four environmental variables. The trained SOM classified sampling sites according to a gradient of EPTC richness, and the groups obtained corresponded to geographic regions of the drainage basin and characteristics of their environmental variables. The SOM showed its convenience to analyze relationships among sampling sites, biological attributes, and environmental variables. After accounting for the relationships in data sets, the BP used to predict the EPTC richness with a set of four environmental variables showed a high accuracy (r=0.91 and r=0.61 for training and test data sets respectively). The prediction of EPTC richness is thus a valuable tool to assess disturbances in given areas: by knowing what the EPTC richness should be, we can determine the degree to which disturbances have altered it. The results suggested that methodologies successively using two different neural networks are helpful to understand ecological data through ordination first, and then to predict target variables.  相似文献   
580.
Neculita CM  Yim GJ  Lee G  Ji SW  Jung JW  Park HS  Song H 《Chemosphere》2011,83(1):76-82
Bioreactors are one possible best sustainable technology to address the mine-impacted water problems. Several prospective substrates (mushroom compost, cow manure, sawdust, wood chips, and cut rice straw) were characterized for their ability to serve as a source of food and energy for sulfate-reducing bacteria. Twenty bench-scale batch bioreactors were then designed and set up to investigate relative effectiveness of various mixtures of substrates to that of mushroom compost, the most commonly used substrate in field bioreactors, for treating mine drainage with acidic (pH 3) and moderate pH (pH 6). Overall, reactive mixtures showed satisfactory performances in generating alkalinity, reducing sulfate and removing metals (Al>Fe>Mn) (up to 100%) at both pH conditions, for all substrates. The mixture of sawdust and cow manure was found as the most effective whereas the mixture containing 40% cut rice straw gave limited efficiency, suggesting organic carbon released from this substrate is not readily available for biodegradation under anaerobic conditions. The mushroom compost-based bioreactors released significant amount of sulfate, which may raise a more concern upon the start-up of field-scale bioreactors. The correlation between the extent of sulfate reduction and dissolved organic carbon/SO(4)(2-) ratio was weak and this indicates that the type of dissolved organic carbon plays a more important role in sulfate reduction than the absolute concentration and that the ratio is not sensitive enough to properly describe the relative effectiveness of substrate mixtures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号