首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30962篇
  免费   332篇
  国内免费   247篇
安全科学   791篇
废物处理   1214篇
环保管理   3955篇
综合类   6302篇
基础理论   7454篇
环境理论   16篇
污染及防治   7793篇
评价与监测   1970篇
社会与环境   1876篇
灾害及防治   170篇
  2022年   257篇
  2021年   271篇
  2020年   175篇
  2019年   248篇
  2018年   418篇
  2017年   463篇
  2016年   687篇
  2015年   540篇
  2014年   748篇
  2013年   2424篇
  2012年   918篇
  2011年   1272篇
  2010年   964篇
  2009年   1072篇
  2008年   1269篇
  2007年   1333篇
  2006年   1189篇
  2005年   990篇
  2004年   965篇
  2003年   957篇
  2002年   876篇
  2001年   1089篇
  2000年   764篇
  1999年   507篇
  1998年   362篇
  1997年   382篇
  1996年   409篇
  1995年   425篇
  1994年   423篇
  1993年   401篇
  1992年   378篇
  1991年   380篇
  1990年   374篇
  1989年   321篇
  1988年   302篇
  1987年   269篇
  1986年   290篇
  1985年   284篇
  1984年   309篇
  1983年   315篇
  1982年   306篇
  1981年   290篇
  1980年   263篇
  1979年   249篇
  1978年   219篇
  1977年   212篇
  1974年   203篇
  1972年   181篇
  1971年   174篇
  1967年   171篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
881.
This paper examines the relationships between measurable watershed hydrologic features, base flow recession rates, and the Q7,10 low flow statistic (the annual minimum seven‐day average streamflow occurring once every 10 years on average). Base flow recession constants were determined by analyzing hydrograph recession data from 24 small (>130 km2), unregulated watersheds across five major physiographic provinces of Pennsylvania, providing a highly variable dataset. Geomorphic, hydrogeologic, and land use parameters were determined for each watershed. The base flow recession constant was found to be most strongly correlated to drainage density, geologic index, and ruggedness number (watershed slope); however, these three parameters are intercorrelated. Multiple regression models were developed for predicting the recession rate, and it was found that only two parameters, drainage density and hydrologic soil group, were required to obtain good estimates of the recession constant. Equations were also developed to relate the recession rates to Q7,10 per unit area, and to the Q7,10/Q50 ratio. Using these equations, estimates of base flow recession rates, Q7,10, and streamflow reduction under drought conditions can be made for small, ungaged basins across a wide range of physiography.  相似文献   
882.
The need for scientifically defensible water quality standards for nonpoint source pollution control continues to be a pressing environmental issue. The probability of impact at differing levels of nonpoint source pollution was determined using the biological response of instream organisms empirically obtained from a statistical survey. A conditional probability analysis was used to calculate a biological threshold of impact as a function of the likelihood of exceeding a given value of pollution metric for a specified geographic area. Uncertainty and natural variability were inherently incorporated into the analysis through the use of data from a probabilistic survey. Data from wadable streams in the mid‐Atlantic area of the U.S. were used to demonstrate the approach. Benthic macroinvertebrate community index values (EPT taxa richness) were used to identify impacted stream communities. Percent fines in substrate (silt/clay fraction, > 0.06 mm) were used as a surrogate indicator for sedimentation. Thresholds of impact due to sedimentation were identified by three different techniques, and were in the range of 12 to 15 percent fines. These values were consistent with existing literature from laboratory and field studies on the impact of sediments on aquatic life in freshwater streams. All results were different from values determined from current regulatory guidance. Finally, it was illustrated how these thresholds could be used to develop criterion for protection of aquatic life in streams.  相似文献   
883.
In this paper, we describe a model designed to simulate seasonal dynamics of warm and cool season grasses and forbs, as well as the dynamics of woody plant succession through five seral stages, in each of nine different plant communities on the Rob and Bessie Welder Wildlife Refuge. The Welder Wildlife Refuge (WWR) is located in the Gulf Coastal Prairies and Marshes ecoregion of Texas. The model utilizes and integrates data from a wide array of research projects that have occurred in south Texas and WWR. It is designed to investigate the effects of alternative livestock grazing programs and brush control practices, with particular emphasis on prescribed burning, the preferred treatment for brush on the WWR. We evaluated the model by simulating changes in the plant communities under historical (1974-2000) temperature, rainfall, livestock grazing rotation, and brush control regimes, and comparing simulation results to field data on herbaceous biomass and brush canopy cover collected on the WWR over the same period. We then used the model to simulate the effects of 13 alternative management schemes, under each of four weather regimes, over the next 25 years. We found that over the simulation period, years 1974-2000, the model does well in simulating the magnitude and seasonality of herbaceous biomass production and changes in percent brush canopy cover on the WWR. It also does well in simulating the effects of variations in cattle stocking rates, grazing rotation programs, and brush control regimes on plant communities, thus providing insight into the combined effects of temperature, precipitation, cattle stocking rates, grazing rotation programs, and brush control on the overall productivity and state of woody plant succession on the WWR. Simulation of alternative management schemes suggests that brush canopy removal differs little between summer and winter prescribed burn treatments when precipitation remains near the long-term average, but during periods of low precipitation canopy removal is greater under winter prescribed burning. The model provides a useful tool to assist refuge personnel with developing long-term brush management and livestock grazing strategies.  相似文献   
884.
885.
Pyrolysis appears to be a promising recycling process since it could convert the disposed polymers to hydrocarbon based fuels or various useful chemicals. In the current study, two model polymers found in WEEEs, namely polycarbonate (PC) and high impact polystyrene (HIPS) and their counterparts found in waste commercial Compact Discs (CDs) were pyrolysed in a bench scale reactor. Both, thermal pyrolysis and pyrolysis in the presence of two catalytic materials (basic MgO and acidic ZSM-5 zeolite) was performed for all four types of polymers. Results have shown significant recovery of the monomers and valuable chemicals (phenols in the case of PC and aromatic hydrocarbons in the case of HIPS), while catalysts seem to decrease the selectivity towards the monomers and enhance the selectivity towards other desirable compounds.  相似文献   
886.
A new approach to the problem of environmental hazard assessment and monitoring for pollutant biodegradation reaction systems in the presence of uncertainty is proposed using soft sensor-based pollutant concentration dynamic profile reconstruction techniques. In particular, a robust reduced-order soft sensor is proposed that can be digitally implemented in the presence of inherent complexity and the inevitable model uncertainty. The proposed method explicitly incorporates all the available information associated with a process model characterized by varying degrees of uncertainty, as well as available sensor measurements of certain physicochemical quantities. Based on the above information, a reduced-order soft sensor is designed enabling the reliable reconstruction of pollutant concentration profiles in complex biodegradation systems that can not be always achieved due to physical and/or technical limitations associated with current sensor technology. The option of using the aforementioned approach to compute toxic load and persistence indexes on the basis of the reconstructed concentration profiles is also pursued. Finally, the performance of the proposed method is evaluated in two illustrative environmental hazard assessment case studies.  相似文献   
887.
In a world of shrinking habitats and increasing competition for natural resources, potentially dangerous predators bring the challenges of coexisting with wildlife sharply into focus. Through interdisciplinary collaboration among authors trained in the humanities, social sciences, and natural sciences, we reviewed current approaches to mitigating adverse human–predator encounters and devised a vision for future approaches to understanding and mitigating such encounters. Limitations to current approaches to mitigation include too much focus on negative impacts; oversimplified equating of levels of damage with levels of conflict; and unsuccessful technical fixes resulting from failure to engage locals, address hidden costs, or understand cultural (nonscientific) explanations of the causality of attacks. An emerging interdisciplinary literature suggests that to better frame and successfully mitigate negative human–predator relations conservation professionals need to consider dispensing with conflict as the dominant framework for thinking about human–predator encounters; work out what conflicts are really about (they may be human–human conflicts); unravel the historical contexts of particular conflicts; and explore different cultural ways of thinking about animals. The idea of cosmopolitan natures may help conservation professionals think more clearly about human–predator relations in both local and global context. These new perspectives for future research practice include a recommendation for focused interdisciplinary research and the use of new approaches, including human‐animal geography, multispecies ethnography, and approaches from the environmental humanities notably environmental history. Managers should think carefully about how they engage with local cultural beliefs about wildlife, work with all parties to agree on what constitutes good evidence, develop processes and methods to mitigate conflicts, and decide how to monitor and evaluate these. Demand for immediate solutions that benefit both conservation and development favors dispute resolution and technical fixes, which obscures important underlying drivers of conflicts. If these drivers are not considered, well‐intentioned efforts focused on human–wildlife conflicts will fail.  相似文献   
888.
The causes of species rarity are of critical concern because of the high extinction risk associated with rarity. Studies examining individual rare species have limited generality, whereas trait‐based approaches offer a means to identify functional causes of rarity that can be applied to communities with disparate species pools. Differences in functional traits between rare and common species may be indicative of the functional causes of species rarity and may therefore be useful in crafting species conservation strategies. However, there is a conspicuous lack of studies comparing the functional traits of rare species and co‐occurring common species. We measured 18 important functional traits for 19 rare and 134 common understory plant species from North Carolina's Sandhills region and compared their trait distributions to determine whether there are significant functional differences that may explain species rarity. Flowering, fire, and tissue‐chemistry traits differed significantly between rare and common, co‐occurring species. Differences in specific traits suggest that fire suppression has driven rarity in this system and that changes to the timing and severity of prescribed fire may improve conservation success. Our method provides a useful tool to prioritize conservation efforts in other systems based on the likelihood that rare species are functionally capable of persisting.  相似文献   
889.
Automotive Shredder Residue (ASR) is a special waste that can be classified as either hazardous or non hazardous depending on the amount of hazardous substances and on the features of leachate gathered from EN12457/2 test. However both the strict regulation concerning landfills and the EU targets related to End-of-Life Vehicles (ELVs) recovery and recycling rate to achieve by 2015 (Directive 2000/53/EC), will limit current landfilling practice and will impose an increased efficiency of ELVs valorization. The present paper considers ELVs context in Italy, taking into account ASRs physical–chemical features and current processing practice, focusing on the enhancement of secondary materials recovery. The application in waste-to-energy plants, cement kilns or metallurgical processes is also analyzed, with a particular attention to the possible connected environmental impacts. Pyrolysis and gasification are considered as emerging technologies although the only use of ASR is debatable; its mixing with other waste streams is gradually being applied in commercial processes. The environmental impacts of the processes are acceptable, but more supporting data are needed and the advantage over (co-)incineration remains to be proven.  相似文献   
890.
One in 6 species (13,465 species) on the International Union for Conservation of Nature (IUCN) Red List is classified as data deficient due to lack of information on their taxonomy, population status, or impact of threats. Despite the chance that many are at high risk of extinction, data‐deficient species are typically excluded from global and local conservation priorities, as well as funding schemes. The number of data‐deficient species will greatly increase as the IUCN Red List becomes more inclusive of poorly known and speciose groups. A strategic approach is urgently needed to enhance the conservation value of data‐deficient assessments. To develop this, we reviewed 2879 data‐deficient assessments in 6 animal groups and identified 8 main justifications for assigning data‐deficient status (type series, few records, old records, uncertain provenance, uncertain population status or distribution, uncertain threats, taxonomic uncertainty, and new species). Assigning a consistent set of justification tags (i.e., consistent assignment to assessment justifications) to species classified as data deficient is a simple way to achieve more strategic assessments. Such tags would clarify the causes of data deficiency; facilitate the prediction of extinction risk; facilitate comparisons of data deficiency among taxonomic groups; and help prioritize species for reassessment. With renewed efforts, it could be straightforward to prevent thousands of data‐deficient species slipping unnoticed toward extinction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号