首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
  国内免费   1篇
环保管理   7篇
综合类   10篇
基础理论   5篇
污染及防治   4篇
评价与监测   4篇
社会与环境   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2000年   4篇
  1999年   1篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1981年   1篇
排序方式: 共有31条查询结果,搜索用时 265 毫秒
21.
ABSTRACT: The biogeochemistry of a coastal old-growth forested watershed in Olympic National Park, Washington, was examined. Objectives were to determine: (1) concentrations of major cations and anions and dissolved organic C (DOC) in precipitation, throughfall, stemflow, soil solution and the stream; (2) nutrient input/output budgets; and (3) nutrient retention mechanisms in the watershed. Stemilow was more acidic (pH 4.0–4.5) than throughfall (pH 5.1) and precipitation (pH 5.3). Organic acids were important contributors to acidity in throughfall and stemflow and tree species influenced pH. Soil solution pH averaged 6.2 at 40 cm depth. Stream pH was higher (7.6). Sodium (54.0 μeq L-1) and Cl (57.6 μeq L?1) were the dominant ions in precipitation, reflecting the close proximity to the ocean. Throughfall and stemflow were generally enriched in cations, especially K. Cation concentrations in soil solutions were generally less than those in stemilow. Ion concentrations increased in the stream. Dominant ions were Ca (759.7 μeq L?1), Na (174.4 μeq L?1), HCO3 (592.0 μeq L?1), and SO4 (331.5 μeq L?1) with seasonal peaks in the fall. Bedrock weathering strongly influenced stream chemistry. Highest average NO3 concentrations were in the stream (5.2 μeq L?1) with seasonal peaks in the fall and lowest concentrations in the growing season. Nitrogen losses were similar to inputs; annual inputs were 4.8 kg/ha (not including fixation) and stream losses were 7.1 kg/ha. Despite the age and successional status of the forest, plant uptake is an important N retention mechanism in this watershed.  相似文献   
22.
ABSTRACT: Federal parks and other public lands have unique mandates and rules regulating their use and conservation. Because of variation in their response to local, regional, and global‐scale disturbance, development of mitigation strategies requires substantial research in the context of long‐term inventory and monitoring. In 1982, the National Park Service began long‐term, watershed‐level studies in a series of national parks. The objective was to provide a more comprehensive database against which the effects of global change and other issues could be quantified. A subset of five sites in North Carolina, Texas, Washington, Michigan, and Alaska, is examined here. During the last 50 years, temperatures have declined at the southern sites and increased at the northern sites with the greatest increase in Alaska. Only the most southern site has shown an increase in precipitation amount. The net effect of these trends, especially for the most northern and southern sites, would likely be an increase in the growing season and especially the time soil processes could continue without moisture or temperature limitations. During the last 18 years, there were few trends in atmospheric ion inputs. The most evident was the decline in SO42 deposition. There were no significant relationships between ion input and stream water output. This finding suggests other factors as modification of precipitation or canopy throughfall by soil processes, hydrologic flow path, and snowmelt rates are major processes regulating stream water chemical outputs.  相似文献   
23.
A linkage between the condition of watersheds and adjacent nearshore coral reef communities is an assumed paradigm in the concept of integrated coastal management. However, quantitative evidence for this "catchment to sea" or "ridge to reef" relationship on oceanic islands is lacking and would benefit from the use of appropriate marine and terrestrial landscape indicators to quantify and evaluate ecological status on a large spatial scale. To address this need, our study compared the Hawai'i Watershed Health Index (HI-WHI) and Reef Health Index (HI-RHI) derived independently of each other over the past decade. Comparisons were made across 170 coral reef stations at 52 reef sites adjacent to 42 watersheds throughout the main Hawaiian Islands. A significant positive relationship was shown between the health of watersheds and that of adjacent reef environments when all sites and depths were considered. This relationship was strongest for sites facing in a southerly direction, but diminished for north facing coasts exposed to persistent high surf. High surf conditions along the north shore increase local wave driven currents and flush watershed-derived materials away from nearshore waters. Consequently, reefs in these locales are less vulnerable to the deposition of land derived sediments, nutrients and pollutants transported from watersheds to ocean. Use of integrated landscape health indices can be applied to improve regional-scale conservation and resource management.  相似文献   
24.
Only recently, within a few decades, have we realized that humanity significantly influences the global environment. In the early 1980s, atmospheric measurements confirmed basic concepts developed a decade earlier. These basic concepts showed that human activities were affecting the ozone layer. Later measurements and theoretical analyses have clearly connected observed changes in ozone to human-related increases of chlorine and bromine in the stratosphere. As a result of prompt international policy agreements, the combined abundances of ozone-depleting compounds peaked in 1994 and ozone is already beginning a slow path to recovery. A much more difficult problem confronting humanity is the impact of increasing levels of carbon dioxide and other greenhouse gases on global climate. The processes that connect greenhouse gas emissions to climate are very complex. This complexity has limited our ability to make a definitive projection of future climate change. Nevertheless, the range of projected climate change shows that global warming has the potential to severely impact human welfare and our planet as a whole. This paper evaluates the state of the scientific understanding of the global change issues, their potential impacts, and the relationships of scientific understanding to policy considerations.  相似文献   
25.
The glue-coated and wet capture spiral of the orb web of the garden cross spider Araneus diadematus is suspended between the dry silk radial and web frame threads. Here, we experimentally demonstrate that the capture spiral is electrically conductive because of necks of liquid connecting the droplets even if the thread is stretched. We examine how this conductivity of the capture spiral may lead to entrapment of charged airborne particles such as pollen, spray droplets and even insects. We further describe and model how the conducting spiral will also locally distort the Earth's ambient electric field. Finally, we examine the hypothesis that such distortion could be used by potential prey to detect the presence of a web but conclude that any effect would probably be too small to allow an insect to take evasive action.  相似文献   
26.
Abandoned mines are known to contaminate private drinking water wells with toxic metals and arsenic (As). Little attention is given, however, to sites in rural areas with low population densities where natural, geogenic sources of contaminants might also occur. This study measured arsenic and trace element exposure among residents consuming water from wells adjacent to abandoned mines near Twisp, in Okanogan County, Washington, USA, estimated the risk of adverse health effects, and considered the degree of uncertainty associated with the assessed risk. Water samples were collected between October 1999 and June 2001. Average As concentrations ranged from <1 to 298 microg L(-1), lead (Pb) ranged from 0 to 94 microg L(-1), cadmium (Cd) 0-5 microg L(-1), and selenium (Se) 0-390 microg L(-1). Concentrations varied seasonally with maximum concentrations occurring in conjunction with snow-melt. The calculated risk of mortality from cancer following exposure to As at average concentrations as low as 8 microg L(-1) was greater than one in 10,000. Additional noncarcinogenic risks are associated with exposure to As, Cd, Pb and Se. A potentially affected population, estimated to be between 1000 and 1287 residents, live within a 6.5-km (4-mile) radius of the study site. This study emphasises the need to test drinking water wells in the vicinity of abandoned mines during times of maximum snow-melt to determine the extent of risk to human health. Residents drinking water from wells tested in this study who want to reduce the estimated carcinogenic risk and the noncarcinogenic hazard quotient should consider treating their water or find alternative sources.  相似文献   
27.
A series of novel synthetic monohydroxy polychlorinated biphenyls (OH-PCBs) (5 trichloro-, 5 tetrachloro- and 5 pentachloro-compounds) have been characterized (1H and 13C NMR and high resolution MS) and their estrogenic and thyroid hormone activities assessed using a yeast two-hybrid assay, both with and without possible metabolic activation by rat liver S9 preparation. Moderate estrogenic activity was found for 2,3,4(')-trichlorobiphenyl-4-ol (compound 5) but this was eliminated when exposed to the S9 mix. 2,2('),3('),4,6-Pentachlorobiphenyl-3-ol (13) and 2('),3,3('),6-tetrachlorobiphenyl-4-ol (10) both showed weak estrogenicity in the absence of the S9 mix. The estrogenicity of compound (10) was enhanced 10-fold by exposure to S9 metabolic activation but that of compound (13) remained unchanged. 2('),4,5('),6-Tetrachlorobiphenyl-2-ol (6) showed strong thyroid hormonal activity (5% of that of T4) whereas 3('),4,6-trichlorobiphenyl-3-ol (4), compound (10) and 2,3('),4,5('),6-pentachlorobiphenyl-3-ol (14) showed moderate activity, and 2('),3,3('),5-tetrachlorobiphenyl-2-ol (8) and 3,3('),5,5('),6-pentachlorobiphenyl-2-ol (11) showed weak activity. The activity of (4) was eliminated by S9 metabolic activation whereas those of (6) and (14) were weakened and that of (10) remained unchanged.  相似文献   
28.
River deltas all over the world are sinking beneath sea-level rise, causing significant threats to natural and social systems. This is due to the combined effects of anthropogenic changes to sediment supply and river flow, subsidence, and sea-level rise, posing an immediate threat to the 500–1,000 million residents, many in megacities that live on deltaic coasts. The Mississippi River Deltaic Plain (MRDP) provides examples for many of the functions and feedbacks, regarding how human river management has impacted source-sink processes in coastal deltaic basins, resulting in human settlements more at risk to coastal storms. The survival of human settlement on the MRDP is arguably coupled to a shifting mass balance between a deltaic landscape occupied by either land built by the Mississippi River or water occupied by the Gulf of Mexico. We developed an approach to compare 50 % L:W isopleths (L:W is ratio of land to water) across the Atchafalaya and Terrebonne Basins to test landscape behavior over the last six decades to measure delta instability in coastal deltaic basins as a function of reduced sediment supply from river flooding. The Atchafalaya Basin, with continued sediment delivery, compared to Terrebonne Basin, with reduced river inputs, allow us to test assumptions of how coastal deltaic basins respond to river management over the last 75 years by analyzing landward migration rate of 50 % L:W isopleths between 1932 and 2010. The average landward migration for Terrebonne Basin was nearly 17,000 m (17 km) compared to only 22 m in Atchafalaya Basin over the last 78 years (p < 0.001), resulting in migration rates of 218 m/year (0.22 km/year) and <0.5 m/year, respectively. In addition, freshwater vegetation expanded in Atchafalaya Basin since 1949 compared to migration of intermediate and brackish marshes landward in the Terrebonne Basin. Changes in salt marsh vegetation patterns were very distinct in these two basins with gain of 25 % in the Terrebonne Basin compared to 90 % decrease in the Atchafalaya Basin since 1949. These shifts in vegetation types as L:W ratio decreases with reduced sediment input and increase in salinity also coincide with an increase in wind fetch in Terrebonne Bay. In the upper Terrebonne Bay, where the largest landward migration of the 50 % L:W ratio isopleth occurred, we estimate that the wave power has increased by 50–100 % from 1932 to 2010, as the bathymetric and topographic conditions changed, and increase in maximum storm-surge height also increased owing to the landward migration of the L:W ratio isopleth. We argue that this balance of land relative to water in this delta provides a much clearer understanding of increased flood risk from tropical cyclones rather than just estimates of areal land loss. We describe how coastal deltaic basins of the MRDP can be used as experimental landscapes to provide insights into how varying degrees of sediment delivery to coastal deltaic floodplains change flooding risks of a sinking delta using landward migrations of 50 % L:W isopleths. The nonlinear response of migrating L:W isopleths as wind fetch increases is a critical feedback effect that should influence human river-management decisions in deltaic coast. Changes in land area alone do not capture how corresponding landscape degradation and increased water area can lead to exponential increase in flood risk to human populations in low-lying coastal regions. Reduced land formation in coastal deltaic basins (measured by changes in the land:water ratio) can contribute significantly to increasing flood risks by removing the negative feedback of wetlands on wave and storm-surge that occur during extreme weather events. Increased flood risks will promote population migration as human risks associated with living in a deltaic landscape increase, as land is submerged and coastal inundation threats rise. These system linkages in dynamic deltaic coasts define a balance of river management and human settlement dependent on a certain level of land area within coastal deltaic basins (L).  相似文献   
29.
Organochlorine pesticide concentrations, particularly those of the DDT family and of toxaphene, were measured by gas chromatography in samples of liver and body fat taken from Australian freshwater crocodiles Crocodylus johnstoni at three locations along the Ord River in Western Australia. The three sampling sites were the irrigation area, downstream of the irrigation area, and well upstream of the irrigation area; the last site serving as the control. DDT and toxaphene were applied in large and known quantities to cotton grown in the Ord Irrigation Area from 1964 to 1974. Thus the residues in the crocodile tissues are representative of the situation almost thirty years after the use of DDT and toxaphene ceased in the area. Very high concentrations of p,p'-DDE and toxaphene were found in the lipid-rich tissues that were examined. Livers and body fat from estuarine crocodiles Crocodylus porosus from the downstream site were also analysed. As p,p'-DDE and toxaphene are both known to be disruptive of endocrine systems, a range of blood parameters, including estradiol and testesterone concentrations, were also measured for all the animals studied. The ovaries and testes of the freshwater crocodiles were also examined histologically. There were no obvious effects on blood chemistry or gonad histology of the large burden of pesticides and their metabolites carried by exposed animals, although the limited number of samples and the variability of the breeding state of the animals examined may have masked possible effects. The isolation of the area, the accurately known applications of DDT and toxaphene, and the simplicity of the drainage system make the lower Ord River a unique natural laboratory for studying the long term breakdown and effects of pesticides applied in a tropical environment.  相似文献   
30.
ABSTRACT: Human induced long-term changes in precipitation and stream chemistry have been observed in eastern North America and Europe, but few long-term studies have been conducted in coastal western North America. The objectives of this research were to determine: (1) time trends in precipitation and stream chemistry in a pristine old-growth forest watershed, and (2) seasonal patterns in precipitation and stream chemistry. It was conducted in 58 ha West Twin Creek Watershed, Hoh River Valley, Olympic National Park, Washington from 1984 to 1993. Vegetation consists of old-growth forest, with western hemlock, Douglas-fir, western redcedar, Pacific silver fir, and Sitka spruce being the dominant tree species. Annual precipitation varied from 2336 to 4518 mm during the study period with the majority of the rain falling between October and May. Chemistry of precipitation was strongly dominated by oceanic influences with Na and Cl being the dominant ions. The chemistry of the stream was influenced by bedrock weathering and was dominated by Ca, HCO3, and SO4 and was not strongly related to precipitation chemistry. The pH of precipitation averaged 5.3 over time and ranged from 4.3 to 7.1, while the stream pH averaged 7.5 and ranged from 5.5 to 9.0. There were few long-term trends in the chemical constituents of bulk precipitation or stream water with the exception of a slight decrease in NO3 in precipitation and an increase of SO4 in stream water. A trend of decreasing concentrations of Ca, Mg and Na in precipitation also occurred. There were no significant seasonal patterns in precipitation although the highest SO4 concentrations usually occurred in late spring and summer perhaps due marine algal activity. Strong seasonal trends occurred in concentrations of HCO3, SO4, Ca, Mg, and Na in stream water resulting from weathering and stream flow patterns, with highest ion concentrations occurring just before the onset of the rainy season. Pulses of NO3 in the stream were observed during fall and early winter resulting from the release of NO3 which had accumulated in soils or sediments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号