首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   858篇
  免费   6篇
  国内免费   6篇
安全科学   26篇
废物处理   52篇
环保管理   99篇
综合类   77篇
基础理论   179篇
环境理论   1篇
污染及防治   294篇
评价与监测   91篇
社会与环境   48篇
灾害及防治   3篇
  2023年   14篇
  2022年   36篇
  2021年   27篇
  2020年   16篇
  2019年   19篇
  2018年   35篇
  2017年   26篇
  2016年   60篇
  2015年   29篇
  2014年   48篇
  2013年   82篇
  2012年   46篇
  2011年   74篇
  2010年   38篇
  2009年   26篇
  2008年   55篇
  2007年   52篇
  2006年   42篇
  2005年   27篇
  2004年   17篇
  2003年   22篇
  2002年   19篇
  2001年   7篇
  2000年   8篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   7篇
  1993年   5篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1986年   3篇
  1985年   1篇
  1979年   2篇
  1976年   1篇
  1971年   1篇
  1966年   1篇
排序方式: 共有870条查询结果,搜索用时 828 毫秒
71.
Large petrochemical flares, common in the Houston Ship Channel (the Ship Channel) and other industrialized areas in the Gulf of Mexico region, emit hundreds to thousands of pounds per hour of highly reactive volatile organic compounds (HRVOCs). We employed fine horizontal resolution (200 m?×?200 m) in a three-dimensional (3D) Eulerian chemical transport model to simulate two historical Ship Channel flares. The model reasonably reproduced the observed ozone rise at the nearest monitoring stations downwind of the flares. The larger of the two flares had an olefin emission rate exceeding 1400 lb/hr. In this case, the model simulated a rate of increase in peak ozone greater than 40 ppb/hr over a 12 km?×?12 km horizontal domain without any unusual meteorological conditions. In this larger flare, formaldehyde emissions typically neglected in official inventories enhanced peak ozone by as much as 16 ppb and contributed over 10 ppb to ambient formaldehyde up to ~8 km downwind of the flare. The intense horizontal gradients in large flare plumes cannot be simulated by coarse models typically used to demonstrate ozone attainment. Moreover, even the relatively dense monitoring network in the Ship Channel may not be able to detect many transient high ozone events (THOEs) caused by industrial flare emissions in the absence of stagnant air recirculation or stalled sea breeze fronts, even though such conditions are unnecessary for the occurrence of THOEs.

Implications: Flare minimization may be an important strategy to attain the U.S. federal ozone standard in industrialized areas, and to avoid inordinate exposure to formaldehyde in neighborhoods surrounding petrochemical facilities. Moreover, air quality monitoring networks, emission inventories, and chemical transport models with higher spatial and temporal resolution and more refined speciation of HRVOCs are needed to better account for the near-source air quality impacts of large olefin flares.  相似文献   
72.
Nitrous acid (HONO) and formaldehyde (HCHO) are important precursors for radicals and are believed to favor ozone formation significantly. Traffic emission data for both compounds are scarce and mostly outdated. A better knowledge of today's HCHO and HONO emissions related to traffic is needed to refine air quality models. Here the authors report results from continuous ambient air measurements taken at a highway junction in Houston, Texas, from July 15 to October 15, 2009. The observational data were compared with emission estimates from currently available mobile emission models (MOBILE6; MOVES [MOtor Vehicle Emission Simulator]). Observations indicated a molar carbon monoxide (CO) versus nitrogen oxides (NOx) ratio of 6.01 ± 0.15 (r 2 = 0.91), which is in agreement with other field studies. Both MOBILE6 and MOVES overestimate this emission ratio by 92% and 24%, respectively. For HCHO/CO, an overall slope of 3.14 ± 0.14 g HCHO/kg CO was observed. Whereas MOBILE6 largely underestimates this ratio by 77%, MOVES calculates somewhat higher HCHO/CO ratios (1.87) than MOBILE6, but is still significantly lower than the observed ratio. MOVES shows high HCHO/CO ratios during the early morning hours due to heavy-duty diesel off-network emissions. The differences of the modeled CO/NOx and HCHO/CO ratios are largely due to higher NOx and HCHO emissions in MOVES (30% and 57%, respectively, increased from MOBILE6 for 2009), as CO emissions were about the same in both models. The observed HONO/NOx emission ratio is around 0.017 ± 0.0009 kg HONO/kg NOx which is twice as high as in MOVES. The observed NO2/NOx emission ratio is around 0.16 ± 0.01 kg NO2/kg NOx, which is a bit more than 50% higher than in MOVES. MOVES overestimates the CO/CO2 emission ratio by a factor of 3 compared with the observations, which is 0.0033 ± 0.0002 kg CO/kg CO2. This as well as CO/NOx overestimation is coming from light-duty gasoline vehicles.
Implications: Nitrous acid (HONO) and formaldehyde (HCHO) are important precursors for radicals that ultimately contribute to ozone formation. There still exist uncertainties in emission sources of HONO and HCHO and thus regional air quality modeling still tend to underestimate concentrations of free radicals in the atmosphere. This paper demonstrates that the latest U.S. Environmental Protection Agency (EPA) traffic emission model MOVES still shows significant deviations from observed emission ratios, in particular underestimation of HCHO/CO and HONO/NOx ratios. Improving the performance of MOVES may improve regional air quality modeling.  相似文献   
73.
74.
Rubio MA  Lissi E  Herrera N  Pérez V  Fuentes N 《Chemosphere》2012,86(10):1035-1039
Phenol, nitrophenols and dinitrophenols were measured in air and dews in downtown Santiago de Chile. In both systems, phenol, 2-nitrophenol (2-NP), and 4-nitrophenol (4-NP) were the compounds found in higher concentrations and with major frequency. Temporal profiles in air were compatible with a significant direct incorporation from mobile sources. The data can be explained in terms of a faster removal of 2-NP than 4-NP, with the former predominating in fresh air masses and 4-NP in more aged samples. All these compounds, as well as dinitrophenols, were found in dew waters. Simultaneous measurements in air and dew indicate that phenol present in dew exceeds that expected in equilibrated samples, while the opposite occurs with 4-NP. This last result is associated to mass transfer limitations for the highly water soluble nitroderivative.  相似文献   
75.
Increased drilling in urban areas overlying shale formations and its potential impact on human health through decreased air quality make it important to estimate the contribution of oil and gas activities to photochemical smog. Flares and compressor engines used in natural gas operations, for example, are large sources not only of NOx but also offormaldehyde, a hazardous air pollutant and powerful ozone precursor We used a neighborhood scale (200 m horizontal resolution) three-dimensional (3D) air dispersion model with an appropriate chemical mechanism to simulate ozone formation in the vicinity ofa hypothetical natural gas processing facility, based on accepted estimates of both regular and nonroutine emissions. The model predicts that, under average midday conditions in June, regular emissions mostly associated with compressor engines may increase ambient ozone in the Barnett Shale by more than 3 ppb beginning at about 2 km downwind of the facility, assuming there are no other major sources of ozone precursors. Flare volumes of 100,000 cubic meters per hour ofnatural gas over a period of 2 hr can also add over 3 ppb to peak 1-hr ozone somewhatfurther (>8 km) downwind, once dilution overcomes ozone titration and inhibition by large flare emissions of NOx. The additional peak ozone from the hypothetical flare can briefly exceed 10 ppb about 16 km downwind. The enhancements of ambient ozone predicted by the model are significant, given that ozone control strategy widths are of the order of a few parts per billion. Degrading the horizontal resolution of the model to 1 km spuriously enhances the simulated ozone increases by reducing the effectiveness of ozone inhibition and titration due to artificial plume dilution.  相似文献   
76.
77.
Southern Chile encompasses one of the most extensive fjord regions of the world, the Patagonia, currently exposed to natural and anthropogenic perturbations. These fjord ecosystems provide important services to humans, which have not been adequately measured and valued. As a consequence, ecosystem services are commonly ignored in public policy design and in the evaluation of development projects. Here we tackle questions that are highly relevant for the nation’s development, namely (1) understanding fjord functioning, and (2) developing management strategies based on ecosystem services, in order to secure simultaneous and adequate use of these ecosystems which area influenced by ecological (e.g., biogeochemical) and productive (e.g., aquaculture, fisheries) processes. We also seek to strengthen the analysis of fjord ecosystem value from the economical (including coastal zoning), socio-cultural, institutional, and governmental points of view. In addition, the investigation of current and future effects of climate change on this large region offers a unique opportunity to understand the social and economic consequences of a global phenomenon at local to regional scales. Biogeochemical and socio-economic models will be used to simulate future scenarios under a gamut of management options.  相似文献   
78.
Applying amendments to multi-element contaminated soils can have contradictory effects on the mobility, bioavailability and toxicity of specific elements, depending on the amendment. Trace elements and PAHs were monitored in a contaminated soil amended with biochar and greenwaste compost over 60 days field exposure, after which phytotoxicity was assessed by a simple bio-indicator test. Copper and As concentrations in soil pore water increased more than 30 fold after adding both amendments, associated with significant increases in dissolved organic carbon and pH, whereas Zn and Cd significantly decreased. Biochar was most effective, resulting in a 10 fold decrease of Cd in pore water and a resultant reduction in phytotoxicity. Concentrations of PAHs were also reduced by biochar, with greater than 50% decreases of the heavier, more toxicologically relevant PAHs. The results highlight the potential of biochar for contaminated land remediation.  相似文献   
79.

Background, aim, and scope  

Pharmaceuticals are emerging pollutants widely used in everyday urban activities which can be detected in surface, ground, and drinking waters. Their presence is derived from consumption of medicines, disposal of expired medications, release of treated and untreated urban effluents, and from the pharmaceutical industry. Their growing use has become an alarming environmental problem which potentially will become dangerous in the future. However, there is still a lack of knowledge about long-term effects in non-target organisms as well as for human health. Toxicity testing has indicated a relatively low acute toxicity to fish species, but no information is available on possible sublethal effects. This study provides data on the physiological pathways involved in the exposure of Atlantic salmon as representative test species to three pharmaceutical compounds found in ground, surface, and drinking waters based on the evaluation of the xenobiotic-induced impairment resulting in the activation and silencing of specific genes.  相似文献   
80.
Through the years, mining and beneficiation processes produces large amounts of As-rich mine wastes laid up in huge tailings and open-air impoundments (Barroca Grande and Rio tailings) that are the main source of pollution in the surrounding area once they are exposed to the weathering conditions leading to the formation of AMD and consequently to the contamination of the surrounding environments, in particularly soils. In order to investigate the environmental contamination impact on S. Francisco de Assis (village located between the two major impoundments and tailings) agricultural soils, a geochemical survey was undertaken to assess toxic metals associations, related levels and their spatial distribution, and to identify the possible contamination sources. According to the calculated contamination factor, As and Zn have a very high contamination factor giving rise to 65.4 % of samples with a moderate to high pollution degree; 34.6 % have been classified as nil to very low pollution degree. The contamination factor spatial distribution put in evidence the fact that As, Cd, Cu, Pb, and Zn soils contents, downstream Barroca Grande tailing, are increased when compared with the local Bk soils. The mechanical dispersion, due to erosion, is the main contamination source. The chemical extraction demonstrates that the trace metals distribution and accumulation in S. Francisco de Assis soils is related to sulfides, but also to amorphous or poorly crystalline iron oxide phases. The partitioning study allowed understanding the local chemical elements mobility and precipitation processes, giving rise to the contamination dispersion model of the study area. The wind and hydrological factors are responsible for the chemical elements transport mechanisms, the water being the main transporter medium and soils as one of the possible retention media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号