In these studies, removal of Fe(III) ions by biosorption processes from aqueous solutions was carried out using paprika (Capsicum annuum L.) pomace generated during processing in the food industry. The biosorbent material was characterized using several analytical methods, including particle size distribution, XRD, SEM–EDS, electrokinetic zeta potential, surface area analysis (BET, BJH), thermogravimetry, morphology (SEM), spectrophotometry FT-IR. Several factors, such as biosorbent dosage, initial concentration, contact time and initial pH were analyzed to show an effect on the bioremoval process, efficiency and adsorption capacity. As a result, the maximum adsorption efficiency and capacity were determined to be 99.1% and 7.92 mg/g, respectively. Based on the kinetics analysis, the bioremoval process is better described by the Langmuir isotherm model and the pseudo-second order equation model. In conclusion, the achieved research results suggest that paprika biomass can be an effective material for efficiently removing iron(III) from wastewater and improving water quality. These studies on the recovery of iron metal from the environment fit in the latest trends in the concept of the global circular economy.
Journal of Polymers and the Environment - Biocomposites based on polyethylene from renewable resources derived from sugar cane as raw material were modified with phosphonium ionic liquids.... 相似文献
The aim of this paper was to study the effects of reinforcing low density polyethylene (LDPE) by using bio-fillers (Doum cellulose or Shrimp chitin) on the mechanical properties. Both, Doum cellulose extracted frsom Doum leaves and Shrimp chitin extracted from shrimp co-products were compounded with LPDE without and with compatibilizer. The biocomposites were prepared by melt blending in a twin-screw extruder. Torsion and flexural tests were performed to investigate the impact of each reinforcement on the biocomposite mechanical properties. The SEM was carried out to study the filler/polymer interface adhesion. The present study has demonstrated that Doum fibers and shrimp chitin succeed in improving the mechanical properties of LPDE bio-composites. The results also showed that the use of maleic anhydride-grafted polyethylene as a compatibilizer improves filler adhesion/matrix and mechanical properties. This study exhibits that polyethylene composites based on Doum fibers or shrimp chitin can be used to replace the polyethylene materials in several fields like packaging and automotive industries. 相似文献
Mass transfer and reaction kinetics of raw Nile water ozonation are examined. The contact system is a perfectly mixed reactor, and ozone is bubbled through a glass diffuser at different supply rates. The ozone residual is detected for different reaction time intervals. A simple mathematical model is proposed to describe the mechanism of the ozone reactions in the reactor. The proposed model quite accurately describes the mass transfer behaviour in the reactor and determines the ozone dissociation rate constant, together with the effect of the chemical reaction on the ozone transfer. A linear relationship is observed between the ozone feed rate and the ozone residual. First order reaction kinetics describes fairly well the autodecomposition and the global reaction rates of ozone in raw water. The mass transfer coefficient is about 0.18 min−1. The dissociation and the reaction rate constants are evaluated to be 0.33 mg L−1 and 0.19 mg L−1min−1. 相似文献
Journal of Polymers and the Environment - As a promising biodegradable polymer, cellulose triacetate (CTA) was synthesized and plasticized with ionic liquids to produce flexible biocomposite films... 相似文献
The trade in wild meat is an important economic component of rural people's livelihoods, but it has been perceived to be among the main causes of the decline of wildlife species. Recently, the COVID-19 pandemic has brought to light an additional concern of wildlife markets as a major human-health challenge. We analyzed data from the largest longitudinal monitoring (1973–2018) of the most important urban wild-meat markets in Iquitos, Peru, to examine the trends in and impacts of these markets on people's livelihoods. Over the last 45 years, wild meat sales increased at a rate of 6.4 t/year (SD 2.17), paralleling urban population growth. Wild meat sales were highest in 2018 (442 t), contributing US$2.6 million (0.76%) to the regional gross domestic product. Five species of ungulates and rodents accounted for 88.5% of the amount of biomass traded. Vulnerable and Endangered species represented 7.0% and 0.4% of individuals sold, respectively. Despite growth in sales, the contribution of wild meat to overall urban diet was constant: 1–2%/year of total meat consumed. This result was due to greater availability and higher consumption of cheaper meats (e.g., in 2018, poultry was 45.8% cheaper and was the most consumed meat) coupled with the lack of economic incentives to harvest wild meat species in rural areas. Most wild meat was sold salted or smoked, reducing the likelihood of foodborne diseases. Community-based wildlife management plans and the continued trade bans on primates and threatened taxa may avoid biodiversity loss. Considering the recent COVID-19 pandemic, future management plans should include potential viral hosts and regulation and enforcement of hygiene practices in wild-meat markets. 相似文献
Domestic animals have immense economic, cultural, and practical value and have played pivotal roles in the development of human civilization. Many domesticates have, among their wild relatives, undomesticated forms representative of their ancestors. Resurgent interest in these ancestral forms has highlighted the unclear genetic status of many, and some are threatened with extinction by hybridization with domestic conspecifics. We considered the contemporary status of these ancestral forms relative to their scientific, practical, and ecological importance; the varied impacts of wild–domestic hybridization; and the challenges and potential resolutions involved in conservation efforts. Identifying and conserving ancestral forms, particularly with respect to disentangling patterns of gene flow from domesticates, is complex because of the lack of available genomic and phenotypic baselines. Comparative behavioral, ecological, and genetic studies of ancestral-type, feral, and domestic animals should be prioritized to establish the contemporary status of the former. Such baseline information will be fundamental in ensuring successful conservation efforts. 相似文献
Environmental Science and Pollution Research - Particulate matter emitted during autopsies can serve as a vector for numerous viruses or bacteria and can lead to infections. Reducing the exposure... 相似文献
Environmental Science and Pollution Research - Hydrogen sulfide (H2S) is one of the main contaminants found in biogas, which is one of the end products of the anaerobic biodegradation of proteins... 相似文献
Environmental Science and Pollution Research - Groundwater aquifers in Morocco’s coastal regions are under serious threat as a result of climate change. This study was conducted to evaluate... 相似文献