首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   982篇
  免费   18篇
  国内免费   7篇
安全科学   34篇
废物处理   32篇
环保管理   173篇
综合类   114篇
基础理论   283篇
环境理论   1篇
污染及防治   253篇
评价与监测   68篇
社会与环境   43篇
灾害及防治   6篇
  2023年   27篇
  2022年   32篇
  2021年   14篇
  2020年   12篇
  2019年   29篇
  2018年   23篇
  2017年   33篇
  2016年   39篇
  2015年   25篇
  2014年   42篇
  2013年   84篇
  2012年   35篇
  2011年   81篇
  2010年   52篇
  2009年   42篇
  2008年   46篇
  2007年   55篇
  2006年   59篇
  2005年   32篇
  2004年   32篇
  2003年   35篇
  2002年   33篇
  2001年   19篇
  2000年   6篇
  1999年   3篇
  1998年   11篇
  1997年   14篇
  1996年   15篇
  1995年   6篇
  1994年   10篇
  1993年   6篇
  1992年   5篇
  1991年   2篇
  1990年   5篇
  1989年   2篇
  1988年   8篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1976年   1篇
  1965年   1篇
  1941年   1篇
  1936年   1篇
排序方式: 共有1007条查询结果,搜索用时 437 毫秒
821.
The overall objective of the Ramsar Convention, signed in 1971, is the conservation and wise use of wetlands by national action and international cooperation as a means to achieving sustainable development. This complex and challenging task requires national, local and international bodies involved in the implementation of the convention to rely on suitable geo-information to better understand wetland areas, complete national inventories, perform monitoring activities, carry out assessments and put in practice suitable management plans based on updated and reliable information. In the last years, Earth Observation (EO) technology has been revealed as a key tool and unique information source to support the environmental community in different application domains, including wetlands' conservation and management. In this context, the European Space Agency (ESA) in collaboration with the Ramsar Secretariat launched in 2003 the "GlobWetland" project in order to demonstrate the current capabilities of Earth Observation technology to support inventorying, monitoring, and assessment of wetland ecosystems. This paper collects the main results and findings of the "GlobWetland" project, providing an overview of the current capabilities and limits of EO technology as a tool to support the implementation of the Ramsar Convention. The project was carried out in collaboration with several regional, national and local conservation authorities and wetland managers, involving 50 different wetlands across 21 countries on four continents. This large range of users provided an excellent test bed to assess the potential of this technology to be applied in different technical, economic and social conditions.  相似文献   
822.
Tetrachloroethene (PCE)‐ and trichloroethene (TCE)‐impacted sites pose significant challenges even when site characterization activities indicate that biodegradation has occurred naturally. Although site‐specific, regulatory, and economic factors play roles in the remedy‐selection process, the application of molecular biological tools to the bioremediation field has streamlined the assessment of remedial alternatives and allowed for detailed evaluation of the chosen remedial technology. The case study described here was performed at a PCE‐impacted site at which reductive dechlorination of PCE and TCE had led to accumulation of cis‐dichlorethene (cis‐DCE) with concentrations ranging from approximately 10 to 100 mg/L. Bio‐Trap® samplers and quantitative polymerase chain reaction (qPCR) enumeration of Dehalococcoides spp. were used to evaluate three remedial options: monitored natural attenuation, biostimulation with HRC®, and biostimulation with HRC‐S®. Dehalococcoides populations in HRC‐S‐amended Bio‐Traps deployed in impacted wells were on the order of 103 to 104 cells/bead but were below detection limits in most unamended and HRC‐amended Bio‐Traps. Thus the in situ Bio‐Trap study identified biostimulation with HRC‐S as the recommended approach, which was further evaluated with a pilot study. After the pilot HRC‐S injection, Dehalococcoides populations increased to 106 to 107 cells/bead, and concentrations of cis‐DCE and vinyl chloride decreased with concurrent ethene production. Based on these results, a full‐scale HRC‐S injection was designed and implemented at the site. As with the pilot study, full‐scale HRC‐S injection promoted growth of Dehalococcoides spp. and stimulated reductive dechlorination of the daughter products cis‐DCE and vinyl chloride. © 2008 Wiley Periodicals, Inc.  相似文献   
823.
2,3,7,8-Tetrachlorodibenzo(p)dioxin (TCDD) has been known to induce inflammatory signaling in a number of cell types and tissues. We found that in U937 macrophages TCDD causes rapid activation of cytosolic phospholipase A2 (cPLA2) within 30 min as judged by the increase in the serine 505 phosphorylated form of cPLA2 protein and the increased cellular release of free arachidonic acid. This initial action of TCDD is accompanied with the up-regulation of an important inflammation marker, COX-2 mRNA expression within 1 h, and by 3 h, several other markers become up-regulated. These effects appear to be dependent on the initial increase in the intracellular concentration of Ca2+, and activation of cPLA2 and COX-2. A comparative study among three different human cell lines showed that activation of COX-2 within 1 h of action of TCDD is a common feature exhibited by all cell lines. On the other hand, the U937 macrophage line appears to be unique among them with respect to its ability to activate TNF-α and IL-8 mRNA expressions, and not requiring Src kinase in propagating the initial signaling of cPLA2. Based on the rapidity of activation of cPLA2 and COX-2, which occurs within 1 h of cell exposure to TCDD, when no change in mRNA expression of CYP1A1 has been observed, it is apparent that this unique action of TCDD is carried out through a distinct “nongenomic” pathway which, is clearly discernable from the classical, “genomic” action pathway of the AhR by not requiring the participation of ARNT.  相似文献   
824.
The heat wave from 1 to 16 August 2003 is considered in the city of Grenoble (French Alps). The modelling system (PREVALP) is based on several models operating on nested domains: MM5 for dynamics, CHIMERE for chemistry (18 km and 6 km grid size) and METPHOMOD for both dynamics and chemistry (2 km grid size). The analysis of the results shows that during the heat wave, the mixing layer is thicker, up to 3500 m agl, hence inducing transport of ozone to high altitude. Two regimes were diagnosed: (1) a freely developing convective layer, (2) a layer trapped under south wind which makes ozone precursors accumulate in the city. Local ozone production is estimated to be 40% of the plume maximum in case (2) and only 30% in case (1). Sensitivity analysis by step increase for temperature at the boundary of the inner domain shows the non-linearity of the response; in this case most of the effect comes from chemistry. By changing biogenic emission significant changes are observed in restricted areas.  相似文献   
825.
Concentrations and congener profile patterns of 2378-substituted PCDD/Fs and DLPCBs in offshore, nearshore and tributary sediments of Lakes Superior and Huron are reported, and spatial trends and source contributions assessed. PCDD/F concentrations ranged from 5 to 18 000 pg/g dw (Lake Superior) and 3 to 6100 pg/g dw (Lake Huron); DLPCBs ranged from 9 to 11 000 pg/g dw (Lake Superior) and 9 to 27 000 pg/g dw (Lake Huron). Our analysis indicated atmospheric deposition is a primary source to depositional areas of both lakes; however, greater PCDD/F and DLPCB concentrations were observed at several nearshore and tributary sites, and were attributed to corresponding land use in the watershed. Statistical analysis and pattern comparison suggested that industrial inputs mainly associated with wood treatment plants, pulp and paper mills, mining operations, and chlorine-based chemical manufacturing also contributed to contamination by PCDD/Fs and DLPCBs in certain nearshore and offshore areas of Lakes Superior and Huron.  相似文献   
826.
Laboratory experiments suggest that strong acids promote formation of enhanced levels of secondary organic aerosol (SOA), and organic aerosols may contribute to the health impacts of fine PM. We report results from examining hourly speciated fine particle data for evidence of ambient aerosol acidity-catalyzed SOA formation, as indicated by larger increases in the concentrations of organic aerosol mass occurring on days and in locations where more acidic aerosol (lower NH4+/SO4= molar ratios) exists. Data sets from the southeastern U.S. were examined for which hourly acidity of PM2.5 aerosols could be estimated, and for which hourly organic carbon (OC) content had been measured simultaneously. Within-day organic aerosol changes during selected periods were statistically related to concurrent aerosol acidity levels estimated from nitrate-corrected ammonium-to-sulfate ratios. Data from the Look Rock, TN, TVA/IMPROVE site for mid-July to mid-August 2004 showed average compositions frequently as acidic as NH4HSO4, however, no apparent increases in OC levels with increasing aerosol acidity were observed, even when [OC] changes were compared with time-delayed aerosol acidity estimates. SEARCH network data (2003–2004) for rural Centreville, AL (CTR) and Yorkville, GA (YRK) sites were also examined. Warm-season acidity levels were higher at CTR than at YRK, and daytime levels exceeded those at night at both sites. At the YRK site no consistent positive correlations were found between changes in OC or TC levels and aerosol acidity, even with time lags up to 6 h. Aerosol acidity at this site, however, is relatively low due to nearby agricultural sources of NH3. In contrast, during selected periods from April to October 2004, at CTR, 6-h lagged OC changes were weakly correlated with daytime, nitrate-corrected NH4+/SO4= molar ratios, but distinguishing this apparent relationship from meteorological effects on measured OC levels is challenging.  相似文献   
827.
An interdisciplinary field study designed to investigate the spatial and temporal variability of atmospheric aerosols during high particulate matter (PM) events along the US–Mexico border near Yuma, AZ was run during the week of March 18, 2007. The experiments were designed to quantify chemical composition and physical phenomena governing the transport of aerosols generated from episodic high PM events. The field study included two micrometeorological monitoring sites; one rural and one urban, equipped with sonic anemometers, continuous particulate concentration monitors and ambient aerosol collection equipment. In addition to the two main monitoring sites, five additional locations were equipped with optical particle counters to allow for the investigation of the spatial and temporal distribution of PM2.5 in the urban environment. In this paper, the meteorological and turbulence parameters governing the distribution and concentration of PM2.5 in the urban environment for two high-wind erosion events and one burning event are compared. The interaction between local atmospheric conditions and the particulate distribution is investigated. Results indicate that a single point measurement in the urban area of Yuma may not be sufficient for determining the ambient PM concentrations that the local population experiences; all three high PM events indicated PM2.5 varied considerably with maximum urban concentrations 5–10 times greater than the measured minima. A comparison of inorganic and carbonaceous content of the aerosols for the three high PM events is presented. The comparison shows an increase in silicon during crustal dust events and an increase in elemental and organic carbon during the burn event. Additional surface chemistry analysis, using time-of-flight secondary ion mass spectrometry (ToF-SIMS), for aerosols collected at the urban and rural sites during the burn event are discussed. The surface chemistry analysis provides positive ion mass spectra of organic and inorganic species in the ambient aerosol, and can be used to determine the type of combustion process that contributed to an increase in PM concentration during the burn event.  相似文献   
828.
One of the most critical measurements needed to understand the biogeochemical cycle of mercury, and to verify atmospheric models, is the rate of mercury wet-deposition. The Mercury Deposition Network (MDN) operates sites across North America to monitor total mercury in wet-deposition. MDN's primary goal is to provide both spatial and temporal continental-scale observations of mercury wet-deposition fluxes to support researchers, modelers, policy-makers and the public interest. MDN represents the only continental-scale mercury deposition database with a >10-year record of continuous values. This study provides analysis and interpretation of MDN observations at 10 years (1996–2005) with an emphasis on investigating whether rigorous, statistically-significant temporal trends and spatial patterns were present and where they occurred. Wet deposition of mercury ranges from more than 25 μg m?2 yr in south Florida to less than 3 μg m?2 yr in northern California. Volume-weighted total mercury concentrations are statistically different between defined regions overall (Southeast ≈ Midwest > Ohio River > Northeast), with the highest in Florida, Minnesota, and several Southwest locations (10–16 ng L?1). Total mercury wet-deposition is significantly different between defined regions (Southeast > Ohio River > Midwest > Northeast). Mercury deposition is strongly seasonal in eastern North America. The average mercury concentration is about two times higher in summer than in winter, and the average deposition is approximately more than three times greater in summer than in winter. Forty-eight sites with validated datasets of five years or more were tested for trends using the non-parametric seasonal Kendall trend test. Significant decreasing mercury wet-deposition concentration trends were found at about half of the sites, particularly across Pennsylvania and extending up through the Northeast.  相似文献   
829.
Total mercury concentrations were determined in seven tissues of 38 fish samples comprising six species from the Kpong hydroelectric reservoir in Ghana by cold vapour atomic absorption spectrometry technique using an automatic mercury analyzer. Mercury concentration in all the tissues ranged from 0.005 to 0.022 μg/g wet weight. In general, the concentration of mercury in all the tissues were decreasing in the order; liver > muscle > intestine > stomach > gonad > gill > swim bladder. Mercury concentration was generally greater in the tissues of high-trophic-level fish such as Clarotes laticeps, Mormyrops anguilloides and Chrysichthys aurutus whereas low-trophic-level fish such as Oreochromis niloticus recorded low mercury concentration in their tissues. The results obtained for total mercury concentration in the muscle tissues analysed in this study are below the WHO/FAO threshold limit of 0.5 μg/g. This suggests that the exposure of the general public to Hg through fish consumption can be considered negligible.  相似文献   
830.
Analysis of Wind-Induced Thermocline Oscillations of Lake Tanganyika   总被引:6,自引:0,他引:6  
An analysis is presented of the wind-induced thermocline oscillations of Lake Tanganyika, East Africa. The region undergoes a four month dry season and the wet season for the rest of the year. The dry season is characterised by nearly constant high southeasterly winds, while for the rest of the year mild wind blows generally from the northeast. Observations show that the dry season high winds cause tilting of the thermocline, being higher/lower than normal at the southern/northern ends of the lake. The thermocline tries to restabilise itself after the cessation of dry season winds and oscillates for the rest of the year. A non-linear reduced-gravity model is used to study the thermocline oscillations of the lake. The numerical simulations satisfactorily represent the oscillations, their period and amplitude. Different forcing conditions (thermocline depth, wind stress and stability) are used in the model and their effect on the period and amplitude of the oscillations are studied. The amplitude of oscillations ranges from 15 to 45 m, while their period varies from 3 to 4 weeks according to the variation in the model parameters. Wavelet transform is used to study the evolution of periods of oscillations with depth in the time series of observations and along the length of the lake using model simulations. Wavelet spectra presents several dominant modes including the semidiurnal, diurnal, synoptic, intraseasonal variability, besides the modes representing the wind-induced thermocline oscillations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号