全文获取类型
收费全文 | 20642篇 |
免费 | 238篇 |
国内免费 | 122篇 |
专业分类
安全科学 | 521篇 |
废物处理 | 888篇 |
环保管理 | 2774篇 |
综合类 | 3399篇 |
基础理论 | 5838篇 |
环境理论 | 10篇 |
污染及防治 | 5304篇 |
评价与监测 | 1278篇 |
社会与环境 | 858篇 |
灾害及防治 | 132篇 |
出版年
2021年 | 149篇 |
2019年 | 127篇 |
2018年 | 234篇 |
2017年 | 252篇 |
2016年 | 401篇 |
2015年 | 306篇 |
2014年 | 467篇 |
2013年 | 1598篇 |
2012年 | 573篇 |
2011年 | 815篇 |
2010年 | 666篇 |
2009年 | 661篇 |
2008年 | 829篇 |
2007年 | 863篇 |
2006年 | 765篇 |
2005年 | 662篇 |
2004年 | 647篇 |
2003年 | 628篇 |
2002年 | 609篇 |
2001年 | 763篇 |
2000年 | 574篇 |
1999年 | 325篇 |
1998年 | 261篇 |
1997年 | 278篇 |
1996年 | 279篇 |
1995年 | 331篇 |
1994年 | 302篇 |
1993年 | 284篇 |
1992年 | 277篇 |
1991年 | 278篇 |
1990年 | 294篇 |
1989年 | 277篇 |
1988年 | 249篇 |
1987年 | 240篇 |
1986年 | 222篇 |
1985年 | 200篇 |
1984年 | 255篇 |
1983年 | 210篇 |
1982年 | 271篇 |
1981年 | 219篇 |
1980年 | 184篇 |
1979年 | 201篇 |
1978年 | 184篇 |
1977年 | 153篇 |
1976年 | 138篇 |
1975年 | 143篇 |
1974年 | 159篇 |
1973年 | 162篇 |
1972年 | 148篇 |
1971年 | 146篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
Modeling the fate of benzo[a]pyrene in the wastewater-irrigated areas of Tianjin with a fugacity model 总被引:1,自引:0,他引:1
Wang XL Tao S Xu FL Dawson RW Cao J Li BG Fang JY 《Journal of environmental quality》2002,31(3):896-903
A Level III fugacity model was applied to characterize the transfer processes and environmental fate of benzo[a]pyrene in wastewater-irrigated areas of Tianjin, China. The physical-chemical properties and transfer parameters of benzo[a]pyrene were used in the model and the concentration distribution of benzo[a]pyrene in sediment, soil, water, air, fish, and crop compartments, as well as transfer fluxes across the compartments, were then derived under steady-state assumptions. The calculated results were compared with monitoring data for air, soil, water, and sediment collected from the literature. The results indicate that there was generally good agreement and the differences were within an order of magnitude for air, soil, and sediment. The concentration of benzo[a]pyrene in the ambient air in the area was very low with a majority present sorbed to aerosol. In the water compartment, approximately 70% of benzo[a]pyrene dissolved in water phase. Relatively high concentrations of the compound were found in the soil and sediment, with the soil serving as the dominant sink in the area. Benzo[a]pyrene, with a slow metabolic rate, was found to accumulate in fish in the area. 相似文献
172.
Milligan DB Wilson PF Mautner MN Freeman CG McEwan MJ Clough TJ Sherlock RR 《Journal of environmental quality》2002,31(2):515-524
A new technique is presented for the rapid, high-resolution identification and quantification of multiple trace gases above soils, at concentrations down to 0.01 microL L(-1) (10 ppb). The technique, selected ion flow tube mass spectrometry (SIFT-MS), utilizes chemical ionization reagent ions that react with trace gases but not with the major air components (N2, O2, Ar, CO2). This allows the real-time measurement of multiple trace gases without the need for preconcentration, trapping, or chromatographic separation. The technique is demonstrated by monitoring the emission of ammonia and nitric oxide, and the search for volatile organics, above containerized soil samples treated with synthetic cattle urine. In this model system, NH3 emissions peaked after 24 h at 2000 nmol m(-2) s(-1) and integrated to approximately 7% of the urea N applied, while NO emissions peaked about 25 d after urine addition at approximately 140 nmol m(-2) s(-1) and integrated to approximately 10% of the applied urea N. The monitoring of organics along with NH3 and NO was demonstrated in soils treated with synthetic urine, pyridine, and dimethylamine. No emission of volatile nitrogen organics from the urine treatments was observed at levels >0.01% of the applied nitrogen. The SIFT method allows the simultaneous in situ measurement of multiple gas components with a high spatial resolution of < 10 cm and time resolution <20 s. These capabilities allow, for example, identification of emission hotspots, and measurement of localized and rapid variations above agricultural and contaminated soils, as well as integrated emissions over longer periods. 相似文献
173.
Only a small fraction of the transition metals content in sludge-amended soils is soluble, and yet this fraction is a major contributor to the mobility and bioavailability of the metals. The chemical species of zinc (Zn) and copper (Cu) in the soluble fractions of soil-sludge mixtures were characterized with respect to their charge, molecular weight, and stoichiometry using ion exchange resin and gel chromatography procedures. The change in the metals' species with time after sludge application was followed for 100 d. Copper in the water extracts of the sludge-sand mixtures was found almost exclusively in low molecular weight (below 1000 Da) complexes. Higher molecular weight (around 2500 Da) dissolved organic carbon (DOC) was present in the extracts as well, but this DOC fraction exhibited little complexation. Copper was present in the extracts mainly as negatively charged species throughout the incubation period, and zinc tended to form zwitter ions. As incubation progressed, the relative content of positively charged Zn in solution increased. Complexation capacity of DOC in sludge water extract, extrapolated to infinite dilution, was 8.75 mM Ca g(-1) DOC. When the complexation capacity of the extract is near saturation, a mean Cu-DOC complex can be defined. It consists of 1.9 Cu atoms attached to DOC species containing 5.6 C atoms. Thus, the organic Cu complexes consist primarily of about two Cu ions attached to DOC species containing only five or six C atoms. Amino acids and small peptides or polycarboxylic acids, such as citric acid, thus may be important complexing agents of the metal. 相似文献
174.
Peggy A. Johnson Richard D. Hey Eric R. Brown David L. Rosgen 《Journal of the American Water Resources Association》2002,38(1):55-67
ABSTRACT: The number of stream restoration and enhancement projects being implemented is rapidly increasing. At road crossings, a transition must be created from the restored channel through the bridge or culvert opening. Given conflicting design objectives for a naturalized channel and a bridge opening, guidance is needed in the design of the transition. In this paper we describe the use of vanes, cross vanes, and w‐weirs, commonly used in stream restoration and enhancement projects, that may provide an adequate transition at bridges. Laboratory experiments were conducted on vanes and cross vanes to provide a transition for single span bridge abutments and on w‐weirs to provide a transition for double span bridges which have a pier in mid‐channel. The results of the experiments provided design criteria for transitions using each of the three structures. Prior field experience provided guidance on appropriate applications in terms of the stream and bridge characteristics. 相似文献
175.
176.
Strategies for sustainable development of the small-scale gold and diamond mining industry of Ghana 总被引:1,自引:0,他引:1
The small-scale gold and diamonds mining industry is of great importance to Ghana. Since its regularization in 1989 the sector has produced and sold over 1.5 million troy ounces of gold and 8.0 million carats of diamonds. During the same period the sector also provided direct employment to over 100,000 people and improved the socioeconomic life of many individuals and communities. However, these were largely achieved at a cost to the environment in areas where mining is carried out and there is the need to develop the industry in a sustainable manner. This paper looks at the developments in the small-scale gold and diamonds mining industry in Ghana and proposes some strategies on how the concepts of sustainable development could be applied to the industry. 相似文献
177.
K. A. Rosentrater T. L. Richard C. J. Bern R. A. Flores 《Resources, Conservation and Recycling》2003,39(4):341-367
Increasing production of corn masa for tortillas, chips, and related snack foods is resulting in large quantities of organic residuals requiring environmentally sound management. These byproduct streams appear suitable for use as livestock feed material, thus eliminating landfilling costs. Possibilities for developing livestock feed include direct shipping to livestock feeding facilities, blending prior to shipping, extrusion processing, pellet mill processing, and dehydration. To assess the viability of these options for reprocessing masa byproducts as livestock feed materials, an economic model was developed and applied to each of these alternatives. Through a series of simulation runs with this model, it was determined that direct shipping was by far the most inexpensive means of recycling masa processing residuals (10–57 $/Mg). Other alternatives examined in increasing order of costs included blending prior to shipping, extrusion, pellet mill processing (3–15, 5–18, and 4–18 times greater than direct shipping, respectively), while dehydration was clearly cost-prohibitive (33–81 times greater). Bagged feed was slightly more expensive to produce than bulk feed (1.1 times greater), and reprocessing costs increased as delivery distance increased, due to increased labor, equipment, and fuel costs, but decreased as byproduct generation rate increased, due to the development of the economies of scale. Alternately, based on a tipping fee of 50 $/Mg, the total estimated cost to landfill ranged from 65 to 112 $/Mg. Based on this cost analysis, direct shipping and feeding to livestock is the recycling option of choice for masa processing byproducts. Although specific details of process configurations and associated costs will vary, similar results are likely for other high moisture food processing residuals destined for utilization as livestock feed or components thereof. 相似文献
178.
179.
Aida Mendez Gary R. Sands Berangere Basin Chang‐Xing Jin Paul J. Wotzka 《Journal of the American Water Resources Association》2004,40(2):385-400
ABSTRACT: Surface and subsurface drainage make crop production economically viable in much of southern Minnesota because drainage allows timely field operations and protects field crops from extended periods of flooded soil conditions. However, subsurface drainage has been shown to increase nitrate/nitrogen losses to receiving waters. When engaging in drainage activities, farmers are increasingly being asked to consider, apart from the economic profit, the environmental impact of drainage. The Agricultural Drainage and Pesticide Transport model (ADAPT) was used in this study to evaluate the impact of subsurface drainage design on the soil water balance over a two‐year period during which observed drainage discharge data were available. Twelve modeling scenarios incorporated four drainage coefficients (DC), 0.64 cm/d, 0.95 cm/d, 1.27 cm/d, and 1.91 cm/d, and three drain depths, 0.84 m, 1.15 m, and 1.45 m. The baseline condition corresponded to the drainage system specifications at the field site: a drain depth and spacing of 1.45 m and 28 m, respectively (DC of 0.64 cm/d). The results of the two‐year simulation suggested that for a given drainage coefficient, soils with the shallower drains (but equal DC) generally have less subsurface drainage and can produce more runoff (but reduced total discharge) and evapotranspiration. The results also suggested that it may be possible to design for both water/nitrate/nitrogen reduction and crop water needs. 相似文献
180.
The Indiana Harbor (Indiana, USA) has not been dredged since 1972 due to lack of a suitable disposal site for dredged sediment. As a result of this, over a million cubic yards of highly contaminated sediment has accumulated in the harbor. Recently, the United States Army Corps of Engineers (USACE) has selected a site for the confined disposal facility (CDF) and is in the process of designing it. Although dredging can be accomplished rapidly, the disposal in the CDF has to be done slowly to allow adequate time for consolidation to occur. The sediment possesses very high moisture content and very low hydraulic conductivity, which cause consolidation to occur slowly. Consolidation of the sediment is essential in order to achieve adequate shear strength of sediments and also to provide enough air space to accommodate the large amount of sediment that requires disposal. Currently, it has been estimated that if a one 3-foot (0.9-m) thick layer of sediment was disposed of at the CDF annually, it would take approximately 10 years to dispose of all the sediment that is to be dredged from the Indiana Harbor. This study investigated the feasibility of using an electroosmotic dewatering technology to accelerate dewatering and consolidation of sediment, thereby allowing more rapid disposal of sediment into the CDF. Electroosmotic dewatering essentially involves applying a small electric potential across the sediment layer, thereby inducing rapid flow as a result of physico-chemical and electrochemical processes. A series of bench-scale electrokinetic experiments were conducted on actual dredged sediment samples from the Indiana Harbor to investigate dewatering rates caused by gravity alone, dewatering rates caused by gravity and electric potential, and the effects of the addition of polymer flocculants on dewatering of the sediments. The results showed that electroosmotic dewatering under an applied electric potential of 1.0VDC/cm could increase the rate of dewatering and consolidation by an order of magnitude as compared to gravity drainage alone. Amending the sediment with polymers at low concentrations (0.5-1% by dry weight) will enhance this dewatering process; however, the optimal polymer concentration and the cost-effectiveness of using polymers should be investigated further. 相似文献