首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27973篇
  免费   220篇
  国内免费   187篇
安全科学   697篇
废物处理   1147篇
环保管理   3269篇
综合类   7452篇
基础理论   6049篇
环境理论   12篇
污染及防治   6949篇
评价与监测   1532篇
社会与环境   1156篇
灾害及防治   117篇
  2022年   205篇
  2018年   353篇
  2017年   333篇
  2016年   506篇
  2015年   402篇
  2014年   568篇
  2013年   1937篇
  2012年   677篇
  2011年   969篇
  2010年   827篇
  2009年   929篇
  2008年   1010篇
  2007年   1095篇
  2006年   963篇
  2005年   814篇
  2004年   844篇
  2003年   822篇
  2002年   770篇
  2001年   997篇
  2000年   709篇
  1999年   480篇
  1998年   315篇
  1997年   316篇
  1996年   296篇
  1995年   369篇
  1994年   381篇
  1993年   321篇
  1992年   336篇
  1991年   364篇
  1990年   356篇
  1989年   344篇
  1988年   298篇
  1987年   275篇
  1986年   257篇
  1985年   263篇
  1984年   307篇
  1983年   287篇
  1982年   299篇
  1981年   287篇
  1980年   245篇
  1979年   268篇
  1978年   225篇
  1977年   208篇
  1975年   203篇
  1974年   222篇
  1973年   202篇
  1968年   198篇
  1967年   235篇
  1966年   208篇
  1965年   216篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
Biodegradation of phthalate esters by two bacteria strains   总被引:22,自引:0,他引:22  
Chang BV  Yang CM  Cheng CH  Yuan SY 《Chemosphere》2004,55(4):533-538
In this study two aerobic phthalic acid ester (PAE) degrading bacteria strains, DK4 and O18, were isolated from river sediment and petrochemical sludge, respectively. The two strains were found to rapidly degrade PAE with shorter alkyl-chains such diethyl phthalate (DEP), dipropyl phthalate (DPrP), di-n-butyl phthalate (DBP), benzylbutyl phthalate (BBP) and diphenyl phthalate (DPP) are very easily biodegraded, while PAE with longer alkyl-chains such as dicyclohexyl phthalate (DCP) and dihexyl phthalate (DHP) and di-(2-ethylhexyl) phthalate (DEHP) are poorly degraded. The degradation rates of the eight PAEs were higher for strain DK4 than for strain O18. In the simultaneous presence of strains DK4 and O18, the degradation rates of the eight PAEs examined were enhanced. When the eight PAEs were present simultaneously, degradation rates were also enhanced. We also found that PAE degradation was delayed by the addition of nonylphenol or selected polycyclic aromatic hydrocarbons (PAHs) at a concentration of 1 microg/g in the sediment. The bacteria strains isolated, DK4 and O18, were identified as Sphigomonas sp. and Corynebacterium sp., respectively.  相似文献   
932.
The concentrations of lead, zinc, copper and cadmium accumulated by 12 emergent-rooted wetland plant species including different populations of Leersia hexandra, Juncus effusus and Equisetum ramosisti were investigated in field conditions of China. The results showed that metal accumulation by wetland plants differed among species, populations and tissues. Populations grown in substrata with elevated metals contained significantly higher metals in plants. Metals accumulated by wetland plants were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance widely exists in them. That some species/populations could accumulate relatively high metal concentrations (far above the toxic concentration to plants) in their shoots indicates that internal detoxification metal tolerance mechanism(s) are also included. The factors affecting metal accumulation by wetland plants include metal concentrations, pH, and nutrient status in substrata. Mostly concentrations of Pb and Cu in both aboveground and underground tissues of the plants were significantly positively related to their total and/or DTPA-extractable fractions in substrata while negatively to soil N and P, respectively. The potential use of these wetland plants in phytoremediation is also discussed.  相似文献   
933.
BACKGROUND, AIM AND SCOPE: With respect to the enormous increase of chemical production in the last decades and the tens of thousands of individual chemicals on the market, the permanent improvement of chemical management is a permanent target to achieve the goals of sustainable consumption and production set by the WSSD in Johannesburg 2002. MAIN FEATURES: Several approaches exist to describe sustainability of chemistry. However, commonly agreed criteria are still missing. There is no doubt that products of modern chemistry help to achieve important goals of sustainability and that significant improvements have occurred regarding direct releases from production sites, but several facts demonstrate that chemistry is far from being sustainable. Still too many chemicals exhibit hazardous characteristics and pose a risk to health and environment. Too many resources are needed to produce chemicals and finished products. RESULTS AND CONCLUSION: Therefore, a strategy for sustainability of chemistry should be developed which comprises the following main elements: 1. Sustainable chemicals: sustainable chemical management includes a regulatory framework which makes no difference between new and existing chemicals, contains efficient information flow through the supply chain which allows users to handle chemicals safely and offers an authorisation procedure and/or an efficient restriction procedure for substances of high concern. This regulatory scheme should promote the development of inherently safe chemicals. 2. Sustainable chemical production: Sustainable chemical production needs the development and implementation of emerging alternative techniques like selective catalysis, biotechnology in order to release less CO2 and less toxic by-products, to save energy and to achieve higher yields. Information exchange on best available techniques (BAT) and best environmental practices (BEP) may help to promote changes towards more sustainability. 3. Sustainable products: An integrated product policy which provides a framework for sustainable products promotes the development of products with a long-term use phase, low resource demand in production and use, low emission of hazardous substances and properties suitable for reuse and recycling. This may be promoted by eco-labelling, chemical leasing concepts and extended information measures to enhance the demand of consumers and various actors in the supply chain for sustainable products. RECOMMENDATION AND PERSPECTIVE: Important tools for the promotion of sustainable chemistry are the abolition of barriers for innovation in legislation and within the chemical industry, more transparency for all users of chemical products, a new focus on sustainability in education and research, and a new way of thinking in terms of sustainability.  相似文献   
934.
This paper reports on the analysis of on-road vehicle speed, emission, and fuel consumption data collected by four instrumented vehicles. Time-, distance-, and fuel-based average fuel consumption, as well as CO, HC, NOx, and soot emission factors, were derived. The influences of instantaneous vehicle speed on emissions and fuel consumption were studied. It was found that the fuel-based emission factors varied much less than the time- and distance-based emission factors as instantaneous speed changed. The trends are similar to the results obtained from laboratory tests. The low driving speed contributed to a significant portion of the total emissions over a trip. Furthermore, the on-road data were analyzed using the modal approach. The four standard driving modes are acceleration, cruising, deceleration, and idling. It was found that the transient driving modes (i.e., acceleration and deceleration) were more polluting than the steady-speed driving modes (i.e., cruising and idling) in terms of g/km and g/sec. These results indicated that the on-road emission measurement is feasible in deriving vehicle emissions and fuel consumption factors in urban driving conditions.  相似文献   
935.
936.
The annual nitrogen (N) budget and groundwater nitrate-N concentrations were studied in the field in three major intensive cropping systems in Shandong province, north China. In the greenhouse vegetable systems the annual N inputs from fertilizers, manures and irrigation water were 1358, 1881 and 402 kg N ha(-1) on average, representing 2.5, 37.5 and 83.8 times the corresponding values in wheat (Triticum aestivum L.)-maize (Zea mays L.) rotations and 2.1, 10.4 and 68.2 times the values in apple (Malus pumila Mill.) orchards. The N surplus values were 349, 3327 and 746 kg N ha(-1), with residual soil nitrate-N after harvest amounting to 221-275, 1173 and 613 kg N ha(-1) in the top 90 cm of the soil profile and 213-242, 1032 and 976 kg N ha(-1) at 90-180 cm depth in wheat-maize, greenhouse vegetable and orchard systems, respectively. Nitrate leaching was evident in all three cropping systems and the groundwater in shallow wells (<15 m depth) was heavily contaminated in the greenhouse vegetable production area, where total N inputs were much higher than crop requirements and the excessive fertilizer N inputs were only about 40% of total N inputs.  相似文献   
937.
Tu C  Zheng CR  Chen HM 《Chemosphere》2000,41(1-2):133-138
A three-month incubation study was undertaken to examine the influence of N, P and K on the various forms (soluble plus exchangeable (SE), weakly specifically adsorbed (WSA), Fe-Mn oxides bound (OX), organic matter complexed (OM) and residual fractions (RES)) of lead (Pb) and cadmium (Cd) in a red soil. Application of urea at the rate of 200 mg N/kg significantly lowered the SE fraction, but raised the WSA or OX fraction of both metals. Supply of 80 mg P/kg caused a decrease in the SE fraction of the two metals. The WSA fraction of Pb was reduced, whereas that of Cd increased by adding P. However, addition of 100 mg K/kg led to an increase in the SE fraction, but a decrease in the WSA fraction of Pb and Cd. Applying chemical fertilizers had no significant consistent influences on the other fractions of metals. These findings suggest that in heavy metal contaminated red soil, applying fertilizers does not only provide plant nutrients, but may also change the speciations and thus biovailability of heavy metals.  相似文献   
938.
Degradation of ethinyl estradiol by nitrifying activated sludge   总被引:26,自引:0,他引:26  
Degradation of ethinyl estradiol (EE2) by nitrifying activated sludge was studied with micro-organisms grown in a reactor with feedback of sludge fed with only a mineral salts medium containing ammonium as the sole energy source. Ammonium was oxidised by this sludge at a rate of 50 mg NH4+ g(-1) DW h(-1). This activated sludge was also capable of degrading EE2 at a maximum rate of 1 microg g(-1) DW h(-1). Using sludge with an insignificant nitrifying capacity of 1 mg NH4+ g(-1) DW h(-1), no degradation of EE2 was detected. Oxidation of EE2 by nitrifying sludge resulted in the formation of hydrophilic compounds, which were not further identified. Most probably degradation by nitrifying sludge results in a loss of estrogenic activity, as hydroxylated derivatives of EE2 are known to have a substantially lower pharmacological activity than EE2.  相似文献   
939.
Two plant species, arugula (Eruca sativa) and mustard (Brassica juncea) were field-grown under four soil management practices: soil mixed with municipal sewage sludge (SS), soil mixed with horse manure (HM), soil mixed with chicken manure (CM), and no-mulch bare soil (NM) to investigate the impact of soil amendments on the concentration of glucosinolates (GSLs) in their shoots. GSLs, hydrophilic plant secondary metabolites in arugula and mustard were extracted using boiling methanol and separated by adsorption on sephadex ion exchange disposable pipette tips filled with DEAE, a weak base, with a net positive charge that exchange anions such as GSLs. Quantification of GSLs was based on inactivation of arugula and mustard myrosinase and liberation of the glucose moiety from the GSLs molecule by addition of standardized myrosinase (thioglucosidase) and spectrophotometric quantification of the liberated glucose moiety. Overall, GSLs concentrations were significantly greater (1287 µg g?1 fresh shoots) in plants grown in SS compared to 929, 890, and 981 µg g?1 fresh shoots in plants grown in CM, HM, and NM soil, respectively. Results also revealed that mustard shoots contained greater concentrations of GSLs (974 µg g?1 fresh shoots) compared to arugula (651 µg g?1 fresh shoots).  相似文献   
940.
Eutrophication of freshwater and coastal marine ecosystems a global problem   总被引:27,自引:2,他引:27  
GOAL, SCOPE AND BACKGROUND: Humans now strongly influence almost every major aquatic ecosystem, and their activities have dramatically altered the fluxes of growth-limiting nutrients from the landscape to receiving waters. Unfortunately, these nutrient inputs have had profound negative effects upon the quality of surface waters worldwide. This review examines how eutrophication influences the biomass and species composition of algae in both freshwater and costal marine systems. MAIN FEATURES: An overview of recent advances in algae-related eutrophication research is presented. In freshwater systems, a summary is presented for lakes and reservoirs; streams and rivers; and wetlands. A brief summary is also presented for estuarine and coastal marine ecosystems. RESULTS: Eutrophication causes predictable increases in the biomass of algae in lakes and reservoirs; streams and rivers; wetlands; and coastal marine ecosystems. As in lakes, the response of suspended algae in large rivers to changes in nutrient loading may be hysteretic in some cases. The inhibitory effects of high concentrations of inorganic suspended solids on algal growth, which can be very evident in many reservoirs receiving high inputs of suspended soils, also potentially may occur in turbid rivers. Consistent and predictable eutrophication-caused increases in cyanobacterial dominance of phytoplankton have been reported worldwide for natural lakes, and similar trends are reported here both for phytoplankton in turbid reservoirs, and for suspended algae in a large river CONCLUSIONS: A remarkable unity is evident in the global response of algal biomass to nitrogen and phosphorus availability in lakes and reservoirs; wetlands; streams and rivers; and coastal marine waters. The species composition of algal communities inhabiting the water column appears to respond similarly to nutrient loading, whether in lakes, reservoirs, or rivers. As is true of freshwater ecosystems, the recent literature suggests that coastal marine ecosystems will respond positively to nutrient loading control efforts. RECOMMENDATIONS AND OUTLOOK: Our understanding of freshwater eutrophication and its effects on algal-related water quality is strong and is advancing rapidly. However, our understanding of the effects of eutrophication on estuarine and coastal marine ecosystems is much more limited, and this gap represents an important future research need. Although coastal systems can be hydrologically complex, the biomass of marine phytoplankton nonetheless appears to respond sensitively and predictably to changes in the external supplies of nitrogen and phosphorus. These responses suggest that efforts to manage nutrient inputs to the seas will result in significant improvements in coastal zone water quality. Additional new efforts should be made to develop models that quantitatively link ecosystem-level responses to nutrient loading in both freshwater and marine systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号