首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11414篇
  免费   68篇
  国内免费   79篇
安全科学   283篇
废物处理   502篇
环保管理   1455篇
综合类   2473篇
基础理论   2583篇
环境理论   5篇
污染及防治   2955篇
评价与监测   687篇
社会与环境   562篇
灾害及防治   56篇
  2022年   94篇
  2021年   99篇
  2019年   88篇
  2018年   150篇
  2017年   132篇
  2016年   226篇
  2015年   173篇
  2014年   243篇
  2013年   820篇
  2012年   304篇
  2011年   428篇
  2010年   338篇
  2009年   396篇
  2008年   429篇
  2007年   492篇
  2006年   431篇
  2005年   353篇
  2004年   367篇
  2003年   373篇
  2002年   333篇
  2001年   429篇
  2000年   312篇
  1999年   205篇
  1998年   115篇
  1997年   123篇
  1996年   108篇
  1995年   154篇
  1994年   148篇
  1993年   123篇
  1992年   130篇
  1991年   149篇
  1990年   119篇
  1989年   127篇
  1988年   132篇
  1987年   115篇
  1986年   83篇
  1985年   99篇
  1984年   124篇
  1983年   125篇
  1982年   123篇
  1981年   97篇
  1980年   93篇
  1979年   106篇
  1978年   89篇
  1977年   84篇
  1976年   78篇
  1975年   90篇
  1974年   101篇
  1972年   69篇
  1965年   74篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
741.
Experiments were conducted to determine the responses of third-instar nymphs of the whipscorpion Mastigoproctus liochirus to various moisture (relative humidity) levels under constant temperature conditions, using a linear humidity gradient apparatus. No previous data exist on the water relations of this uropygid. Under saturated conditions (100% RH) animals showed no preference for any section of the chamber. When a humidity gradient was established (20 to 100% RH), whipscorpions exhibited a marked preference for an area of the chamber characterized by 70 to 80% RH.  相似文献   
742.
Abstract:  Ecologists and economists both use models to help develop strategies for biodiversity management. The practical use of disciplinary models, however, can be limited because ecological models tend not to address the socioeconomic dimension of biodiversity management, whereas economic models tend to neglect the ecological dimension. Given these shortcomings of disciplinary models, there is a necessity to combine ecological and economic knowledge into ecological-economic models. It is insufficient if scientists work separately in their own disciplines and combine their knowledge only when it comes to formulating management recommendations. Such an approach does not capture feedback loops between the ecological and the socioeconomic systems. Furthermore, each discipline poses the management problem in its own way and comes up with its own most appropriate solution. These disciplinary solutions, however, are likely to be so different that a combined solution considering aspects of both disciplines cannot be found. Preconditions for a successful model-based integration of ecology and economics include (1) an in-depth knowledge of the two disciplines, (2) the adequate identification and framing of the problem to be investigated, and (3) a common understanding between economists and ecologists of modeling and scale. To further advance ecological-economic modeling the development of common benchmarks, quality controls, and refereeing standards for ecological-economic models is desirable.  相似文献   
743.
Abstract:  Infectious disease is listed among the top five causes of global species extinctions. However, the majority of available data supporting this contention is largely anecdotal. We used the IUCN Red List of Threatened and Endangered Species and literature indexed in the ISI Web of Science to assess the role of infectious disease in global species loss. Infectious disease was listed as a contributing factor in <4% of species extinctions known to have occurred since 1500 (833 plants and animals) and as contributing to a species' status as critically endangered in <8% of cases (2852 critically endangered plants and animals). Although infectious diseases appear to play a minor role in global species loss, our findings underscore two important limitations in the available evidence: uncertainty surrounding the threats to species survival and a temporal bias in the data. Several initiatives could help overcome these obstacles, including rigorous scientific tests to determine which infectious diseases present a significant threat at the species level, recognition of the limitations associated with the lack of baseline data for the role of infectious disease in species extinctions, combining data with theory to discern the circumstances under which infectious disease is most likely to serve as an agent of extinction, and improving surveillance programs for the detection of infectious disease. An evidence-based understanding of the role of infectious disease in species extinction and endangerment will help prioritize conservation initiatives and protect global biodiversity.  相似文献   
744.
The environment as a factor of production   总被引:2,自引:1,他引:2  
This paper uses firm-level data about electric utilities to develop an empirical model of how electric utilities use and bank SO2 pollution permits under the Acid Rain Program. The empirical model considers emissions, fuels, and labor as variable inputs with quasi-fixed stocks of permits and capital. Consequently, substitution possibilities between the environment and other production factors can be measured and tested. The results reveal substantial substitution between emissions, permit stocks, capital, fuel, and labor. The empirical findings also indicate that firms bank permits primarily as a hedge against uncertainty and for other firm-specific reasons. Overall, the results suggest that cap-and-trade approaches can reduce the cost of meeting environmental goals by providing a mechanism for addressing regulatory and market risks and by signaling an appropriate price for factor use, especially irreversible capital investments.  相似文献   
745.
746.
We have developed a knowledge discovery system based on high-order hidden Markov models for analyzing spatio-temporal data bases. This system, named CarrotAge , takes as input an array of discrete data – the rows represent the spatial sites and the columns the time slots – and builds a partition together with its a posteriori probability. CarrotAge has been developed for studying the cropping patterns of a territory. It uses therefore an agricultural drench database, named Ter-Uti , which records every year the land-use category of a set of sites regularly spaced. The results of CarrotAge are interpreted by agronomists and used in research works linking agricultural land use and water management. Moreover, CarrotAge can be used to find out and study crop sequences in large territories, that is a main question for agricultural and environmental research, as discussed in this paper.  相似文献   
747.
Periodical sand inundation influences diversity and distribution of intertidal species throughout the world. This study investigates the effect of sand stress on survival and on habitat segregation of the two dominant mussel species living in South Africa, the invasive Mytilus galloprovincialis and the indigenous Perna perna. P. perna occupies a lower intertidal zone which, monthly surveys over 1.5 years showed, is covered by sand for longer periods than the higher M. galloprovincialis zone. Despite this, when buried under sand, P. perna mortality rates were significantly higher than those of M. galloprovincialis in both laboratory and in field experiments. Under anoxic condition, P. perna mortality rates were still significantly higher than those for M. galloprovincialis, but both species died later than when exposed to sand burial, underlining the importance of the physical action of sand on mussel internal organs. When buried, both species accumulate sediments within the shell valves while still alive, but the quantities are much greater for P. perna. This suggests that P. perna gills are more severely damaged by sand abrasion and could explain its higher mortality rates. M. galloprovincialis has longer labial palps than P. perna, indicating a higher particle sorting ability and consequently explaining its lower mortality rates when exposed to sand in suspension. Habitat segregation is often explained by physiological tolerances, but in this case, such explanations fail. Although sand stress strongly affects the survival of the two species, it does not explain their vertical zonation. Contrary to our expectations, the species that is less well adapted to cope with sand stress maintains dominance in a habitat where such stress is high. GI Zardi, KR Nicastro contributed equally to the work  相似文献   
748.
Ness JH  Morris WF  Bronstein JL 《Ecology》2006,87(4):912-921
Generalized, facultative mutualisms are often characterized by great variation in the benefits provided by different partner species. This variation may be due to differences among species in the quality and quantity of their interactions, as well as their phenology. Many plant species produce extrafloral nectar, a carbohydrate-rich resource, to attract ant species that can act as "bodyguards" against a plant's natural enemies. Here, we explore differences in the quality and quantity of protective service that ants can provide a plant by contrasting the four most common ant visitors to Ferocactus wislizeni, an extrafloral nectary-bearing cactus in southern Arizona. The four species differ in abundance when tending plants, and in the frequency at which they visit plants. By adding surrogate herbivores (Manduca sexta caterpillars) to plants, we demonstrate that all four species recruit to and attack potential herbivores. However, their per capita effectiveness in deterring herbivores (measured as the inverse of the number of workers needed to remove half of the experimentally added caterpillars) differs. Using these among-species differences in quality (per capita effectiveness) and quantity (number of workers that visit a plant and frequency of visitation), we accurately predicted the variation in fruit production among plants with different histories of ant tending. We found that plant benefits (herbivore removal and maturation of buds and fruits) typically saturated at high levels of ant protection, although plants could be "well defended" via different combinations of interaction frequency, numbers of ant workers per interaction, and per capita effects. Our study documents variation among prospective mutualists, distinguishes the components of this variation, and integrates these components into a predictive measure of protection benefit to the plant. The method we used to average saturating benefits over time could prove useful for quantifying overall service in other mutualisms.  相似文献   
749.
We studied northern flying squirrel (Glaucomys sabrinus) demography in the eastern Washington Cascade Range to test hypotheses about regional and local abundance patterns and to inform managers of the possible effects of fire and fuels management on flying squirrels. We quantified habitat characteristics and squirrel density, population trends, and demography in three typical forest cover types over a four-year period. We had 2034 captures of flying squirrels over 41 000 trap nights from 1997 through 2000 and marked 879 squirrels for mark-recapture population analysis. Ponderosa pine (Pinus ponderosa) forest appeared to be poorer habitat for flying squirrels than young or mature mixed-conifer forest. About 35% fewer individuals were captured in open pine forest than in dry mixed-conifer Douglas-fir (Pseudotsuga menziesii) and grand fir (Abies grandis) forests. Home ranges were 85% larger in pine forest (4.6 ha) than in mixed-conifer forests (2.5 ha). Similarly, population density (Huggins estimator) in ponderosa pine forest was half (1.1 squirrels/ha) that of mixed-conifer forest (2.2 squirrels/ha). Tree canopy cover was the single best correlate of squirrel density (r = 0.77), with an apparent threshold of 55% canopy cover separating stands with low- from high-density populations. Pradel estimates of annual recruitment were lower in open pine (0.28) than in young (0.35) and mature (0.37) forest. High recruitment was most strongly associated with high understory plant species richness and truffle biomass. Annual survival rates ranged from 45% to 59% and did not vary among cover types. Survival was most strongly associated with understory species richness and forage lichen biomass. Maximum snow depth had a strong negative effect on survival. Rate of per capita increase showed a density-dependent response. Thinning and prescribed burning in ponderosa pine and dry mixed conifer forests to restore stable fire regimes and forest structure might reduce flying squirrel densities at stand levels by reducing forest canopy, woody debris, and the diversity or biomass of understory plants, truffles, and lichens. Those impacts might be ameliorated by patchy harvesting and the retention of large trees, woody debris, and mistletoe brooms. Negative stand-level impacts would be traded for increased resistance and resilience of dry-forest landscapes to now-common, large-scale stand replacement fires.  相似文献   
750.
Hines J  Megonigal JP  Denno RF 《Ecology》2006,87(6):1542-1555
Historically, terrestrial food web theory has been compartmentalized into interactions among aboveground or belowground communities. In this study we took a more synthetic approach to understanding food web interactions by simultaneously examining four trophic levels and investigating how nutrient (nitrogen and carbon) and detrital subsidies impact the ability of the belowground microbial community to alter the abundance of aboveground arthropods (herbivores and predators) associated with the intertidal cord grass Spartina alterniflora. We manipulated carbon, nitrogen, and detrital resources in a field experiment and measured decomposition rate, soil nitrogen pools, plant biomass and quality, herbivore density, and arthropod predator abundance. Because carbon subsidies impact plant growth only indirectly (microbial pathways), whereas nitrogen additions both directly (plant uptake) and indirectly (microbial pathways) impact plant primary productivity, we were able to assess the effect of both belowground soil microbes and nutrient availability on aboveground herbivores and their predators. Herbivore density in the field was suppressed by carbon supplements. Carbon addition altered soil microbial dynamics (net potential ammonification, litter decomposition rate, DON [dissolved organic N] concentration), which limited inorganic soil nitrogen availability and reduced plant size as well as predator abundance. Nitrogen addition enhanced herbivore density by increasing plant size and quality directly by increasing inorganic soil nitrogen pools, and indirectly by enhancing microbial nitrification. Detritus adversely affected aboveground herbivores mainly by promoting predator aggregation. To date, the effects of carbon and nitrogen subsidies on salt marshes have been examined as isolated effects on either the aboveground or the belowground community. Our results emphasize the importance of directly addressing the soil microbial community as a factor that influences aboveground food web structure by affecting plant size and aboveground plant nitrogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号