Environmental Science and Pollution Research - This work proposes a novel approach for the coupling of ozonation and Fenton processes using a new prototype of a high rotation bubble reactor (HRBR),... 相似文献
Environmental Science and Pollution Research - Phytoremediation techniques have been proposed as ecological methods to clean up contaminated sites. This study is aimed to evaluate the effect of the... 相似文献
Radiocesium vertical profiles in organics-rich sediments of running shallow eutrophic Lake Juodis (Lithuania) were studied in relation to seasonal variations of vertical profiles (in water column and sediments) of standard variables (pH, redox potential, temperature, oxygen concentrations, conductivity). It is shown that the sedimentation rate, radiocesium mobility and its vertical profiles in sediments are controlled by the vital cycle (processes of the growth, accumulation and decomposition) of green algae covering the main bottom areas of the lake. It is also shown that calcite deposits are formed in the shallow bottom areas that are oxygenated throughout the year because of the photosynthetic activity of the green algae covering the sediment. Formation of the calcite coatings on freshly accumulated organics is remarkable for causing elevated densities of sediment solids in the upper part of the respective vertical profiles. These calcite deposits behave as a barrier for radiocesium backward flux to the bottom water making the respective bottom areas a radionuclide sink. Together with the jelly-structured sediments lying below these deposits, the calcite preserves the shape of the primary radiocesium vertical profiles formed due to free-ion diffusion after the deposition event. It was determined that bottom areas anaerobic in winter are the main radiocesium source in the water column and cause characteristic radiocesium redistribution in surface sediments. 相似文献
The removal of heavy metals from wastewater has become a global challenge, which demands the continuous study of efficient and low-cost treatment alternatives such as adsorption. In this research, the removal of zinc was evaluated using batch adsorption processes with nonconventional materials such as graphene oxide (GO), magnetite (MG), and their composites (GO:MG), formulated with three weight ratios (2:1, 1:1, and 1:2). Graphene was synthesized by the modified Marcano method, using pencil lead graphite as a precursor. MG and the composites were synthesized by chemical coprecipitation of ferrous sulfate and ferric chloride. The materials were characterized by Raman and Fourier transform infrared spectroscopies, scanning electron microscopy, X-ray diffraction, and the Brunauer–Emmett–Teller method to determine the functional groups, microstructural and morphological characteristics, and specific surface area. Batch adsorption tests were carried out to optimize the adsorbent dose and contact time with zinc solutions of 10 ppm. Zinc adsorption reached equilibrium at 2 h, with an optimal dose between 0.25 and 1.0 g/L. The maximum zinc removal efficiencies/adsorption capacities were 98.6%/165.6, 83.4%/47.6, 83.5%/21.9, 72.8%/19.9, and 82.2%/9.25 mg/g using GO, 2GO:1MG, 1GO:1MG, 1GO:2MG, and MG, respectively. Furthermore, the analysis of the isotherm and adsorption kinetics models determined that the adsorption processes using MG and the composites fit the Sips and pseudo-second-order models. 相似文献
The objective of this study was to impregnate the surface of palm coconut activated carbon with nanoparticles of iron compounds using Moringa oleifera leaf extracts and pomegranate leaf by a green synthesis method and to evaluate its adsorption capacity for sodium diclofenac. The adsorbent material was characterized by zeta potential, X-ray diffraction (XRD), N2 adsorption/desorption (BET method), transmission electronic microscopy (TEM), and scanning electronic microscopy (SEM) coupled to dispersive energy spectrometry X-ray (EDX) methods. To evaluate the adsorption capacity of sodium diclofenac, the influence of pH, kinetics, isotherms, and thermodynamic properties were analysed. The impregnated adsorbents showed efficiency in the adsorption of sodium diclofenac. The kinetic model that best fit the experimental data was the pseudo-second-order model, and the equilibrium model was the Langmuir model. As for the thermodynamic study, it was verified that the adsorption reaction for all adsorbents occurs in a spontaneous, favourable way, and it is endothermic by physisorption. Therefore, this process is promising because it is a clean and non-toxic method when compared with chemical methods for the synthesis of nanoparticles.
Soil pollution with Cd is an environmental problem common in the world, and it is necessary to establish what Cd concentrations
in soil could be dangerous to its fertility from toxicity effects and the risk of transference of this element to plants and
other organisms of the food chain. In this study, we assessed Cd toxicity on soil microorganisms and plants in two semiarid
soils (uncultivated and cultivated). Soil ATP content, dehydrogenase activity, and plant growth were measured in the two soils
spiked with concentrations ranging from 3 to 8000 mg Cd/kg soil and incubated for 3 h, 20 days, and 60 days. The Cd concentrations
that produced 5%; 10%;, and 50%; inhibition of each of the two soil microbiological parameter studied (ecological dose, ED,
values) were calculated using two different mathematical models. Also, the effect of Cd concentration on plant growth of ryegrass
(Lolium perenne, L.) was studied in the two soils. The Cd ED values calculated for soil dehydrogenase activity and ATP content were higher
in the agricultural soils than in the bare soil. For ATP inhibition, higher ED values were calculated than for dehydrogenase
activity inhibition. The average yields of ryegrass were reduced from 5.03 to 3.56 g in abandoned soil and from 4.21 to 1.15
g in agricultural soil with increasing concentrations of Cd in the soil. Plant growth was totally inhibited in abandoned and
agricultural soils at Cd concentrations above 2000 and 5000 mg/kg soil, respectively. There was a positive correlation between
the concentration of Cd in the plants and the total or DTPA-extractable concentrations of Cd in the soil. 相似文献
The problems of overproduction within the European Union countries and the environmental impact of agriculture have lead to the introduction of schemes that aim to reduce both. Beef (Bos taurus) production forms a large component of the Irish agricultural industry and accounts for more than one quarter of agricultural economic output. Recently, the European CAP (Common Agricultural Policy) has been re-evaluated to include supplementary measures that encompass the environmental role of agriculture rather than just the production role. A life cycle assessment (LCA) method was adopted to estimate emissions per kilogram of CO2 equivalent per kilogram of live weight (LW) leaving the farm gate per annum (kg CO2 kg(-1) LW yr(-1)) and per hectare (kg CO2 ha(-1) yr(-1)). Fifteen units engaged in suckler-beef production (five conventional, five in an Irish agri-environmental scheme, and five organic units) were evaluated for emissions per unit product and area. The average emissions from the conventional units were 13.0 kg CO2 kg(-1) LW yr(-1), from the agri-environmental scheme units 12.2 kg CO2 kg(-1) LW yr(-1), and from the organic units 11.1 kg CO2 kg LW yr(-1). The average emissions per unit area from the conventional units was 5346 kg CO2 ha(-1) yr(-1), from the agri-environmental scheme units 4372 kg CO2 ha(-1) yr(-1), and from the organic units 2302 kg CO2 ha(-1) yr(-1). Results indicated that moving toward extensive production could reduce emissions per unit product and area but live weight production per hectare would be reduced. 相似文献