首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22471篇
  免费   4900篇
  国内免费   28636篇
安全科学   2162篇
废物处理   1021篇
环保管理   2001篇
综合类   35064篇
基础理论   4138篇
环境理论   2篇
污染及防治   8215篇
评价与监测   1959篇
社会与环境   649篇
灾害及防治   796篇
  2024年   31篇
  2023年   237篇
  2022年   738篇
  2021年   617篇
  2020年   1109篇
  2019年   2213篇
  2018年   2459篇
  2017年   2585篇
  2016年   2265篇
  2015年   2797篇
  2014年   3564篇
  2013年   4006篇
  2012年   3717篇
  2011年   3373篇
  2010年   2991篇
  2009年   2991篇
  2008年   2742篇
  2007年   2592篇
  2006年   2054篇
  2005年   1548篇
  2004年   1326篇
  2003年   1159篇
  2002年   982篇
  2001年   954篇
  2000年   1036篇
  1999年   892篇
  1998年   698篇
  1997年   660篇
  1996年   659篇
  1995年   584篇
  1994年   376篇
  1993年   318篇
  1992年   364篇
  1991年   326篇
  1990年   258篇
  1989年   211篇
  1988年   152篇
  1987年   76篇
  1986年   80篇
  1985年   58篇
  1984年   56篇
  1983年   44篇
  1982年   46篇
  1981年   35篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
  1974年   2篇
  1972年   8篇
  1971年   6篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
61.
Exposure to engineered nanomaterials(ENMs), such as graphene oxide(GO), can potentially induce the response of various molecular signaling pathways, which can mediate the protective function or the toxicity induction.Wnt signaling pathway is conserved evolutionarily in organisms.Using Caenorhabditis elegans as an in vivo assay model, we investigated the effect of GO exposure on intestinal Wnt signaling.In the intestine, GO exposure dysregulated Frizzled receptor MOM-5, Disheveled protein DSH-2, GSK-3(a component of APC complex), and two β-catenin proteins(BAR-1 and HMP-2), which mediated the induction of GO toxicity.In GO exposed nematodes, a Hox protein EGL-5 acted as a downstream target of BAR-1, and fatty acid transport ACS-22 acted as a downstream target of HMP-2.Functional analysis on HMP-2 and ACS-22 suggested that the dysregulation of these two proteins provides an important basis for the observed deficit in functional state of intestinal barrier.Our results imply the association of dysregulation in physiological and functional states of intestinal barrier with toxicity induction of GO in organisms.  相似文献   
62.
Inhaled atmospheric fine particulate matter(PM_(2.5)) includes soluble and insoluble fractions,and each fraction can interact with cells and cause adverse effects.PM_(2.5) samples were collected in Jinan,China,and the soluble and insoluble fractions were separated.According to physiochemical characterization,the soluble fraction mainly contains watersoluble ions and organic acids,and the insoluble fraction mainly contains kaolinite,calcium carbonate and some organic carbon.The interaction between PM_(2.5) and model cell membranes was examined with a quartz crystal microbalance with dissipation(QCM-D) to quantify PM_(2.5) attachment on membranes and membrane disruption.The cytotoxicity of the total PM_(2.5) and the soluble and insoluble fractions,was investigated.Negatively charged PM_(2.5) can adhere to the positively charged membranes and disrupt them.PM_(2.5)also adheres to negatively charged membranes but does not cause membrane rupture.Therefore,electrostatic repulsion does not prevent PM_(2.5) attachment,but electrostatic attraction induces remarkable membrane rupture.The human lung epithelial cell line A549 was used for cytotoxicity assessment.The detected membrane leakage,cellular swelling and blebbing indicated a cell necrosis process.Moreover,the insoluble PM_(2.5) fraction caused a higher cell mortality and more serious cell membrane damage than the soluble fraction.The levels of reactive oxygen species(ROS) enhanced by the two fractions were not significantly different.The findings provide more information to better understand the mechanism of PM_(2.5) cytotoxicity and the effect of PM_(2.5) solubility on cytotoxicity.  相似文献   
63.
Changes in water quality from source water to finished water and tap water at two conventional drinking water treatment plants(DWTPs) were monitored.Beside the routine water quality testing,Caenorhabditis elegans-based toxicity assays and the fluorescence excitation–emission matrices technique were also applied.Both DWTPs supplied drinking water that met government standards.Under current test conditions,both the investigated finished water and tap water samples exhibited stronger lethal,genotoxic and reprotoxic potential than the relative source water sample,and the tap water sample was more lethal but tended to be less genotoxic than the corresponding finished water sample.Meanwhile,the nearly complete removal of tryptophan-like substances and newly generated tyrosine-like substances were observed after the treatment of drinking water,and humic-like substances were identified in the tap water.Based on these findings,toxic pollutants,including genotoxic/reproductive toxicants,are produced in the drinking water treatment and/or distribution processes.Moreover,further studies are needed to clarify the potentially important roles of tyrosine-like and humic-like substances in mediating drinking water toxicity and to identify the potential sources of these contaminants.Additionally,tryptophan-like fluorescence may be adopted as a useful parameter to monitor the treatment performance of DWTPs.Our observations provided insights into the importance of utilizing biotoxicity assays and fluorescence spectroscopy as tools to complement the routine evaluation of drinking water.  相似文献   
64.
Based on density functional theory (DFT) and basic structure models, the chemical reactions on the surface of vanadium-titanium based selective catalytic reduction (SCR) denitrification catalysts were summarized. Reasonable structural models (non-periodic and periodic structural models) are the basis of density functional calculations. A periodic structure model was more appropriate to represent the catalyst surface, and its theoretical calculation results were more comparable with the experimental results than a non-periodic model. It is generally believed that the SCR mechanism where NH3 and NO react to produce N2 and H2O follows an Eley-Rideal type mechanism. NH2NO was found to be an important intermediate in the SCR reaction, with multiple production routes. Simultaneously, the effects of H2O, SO2 and metal on SCR catalysts were also summarized.  相似文献   
65.
Ozone (O3), as a harmful air pollutant, has been of wide concern. Safe, efficient, and economical O3 removal methods urgently need to be developed. Catalytic decomposition is the most promising method for O3 removal, especially at room temperature or even subzero temperatures. Great efforts have been made to develop high-efficiency catalysts for O3 decomposition that can operate at low temperatures, high space velocity and high humidity. First, this review describes the general reaction mechanism of O3 decomposition on noble metal and transition metal oxide catalysts. Then, progress on the O3 decomposition performance of various catalysts in the past 30 years is summarized in detail. The main focus is the O3 decomposition performance of manganese oxides, which are divided into supported manganese oxides and non-supported manganese oxides. Methods to improve the activity, stability, and humidity resistance of manganese oxide catalysts for O3 decomposition are also summarized. The deactivation mechanisms of manganese oxides under dry and humid conditions are discussed. The O3 decomposition performance of monolithic catalysts is also summarized from the perspective of industrial applications. Finally, the future development directions and prospects of O3 catalytic decomposition technology are put forward.  相似文献   
66.
In this work,we fabricated three kinds of Ag/Fe_2O_3 model catalysts with different morphologies to study the interfacial interactions between Ag and Fe_2O_3,and how they affected the catalytic activity in hydrogenation of p-nitrophenol was explored.The hydrothermal method was used to synthesize the metal oxide supported silver catalyst,with various morphologies including nanoplates(NPs),nanospheres(NSs),and nanocubes(NCs).The crystal structure,morphology and surface elements of the composite were investigated by various measurements,such as X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM) and X-ray photoelectron spectroscopy(XPS).The catalytic activity was also evaluated by the reduction of p-nitrophenol to p-aminophenol.It was found that the activities of the above catalysts varied with the morphology of the support.Among them,Ag/Fe_2O_3 NPs promoted the highest performance,Ag/Fe_2O_3 NSs were slightly inferior,and Ag/Fe_2O_3 NCs were the worst.At last,we ascribed the remarkable activity of Ag/Fe_2O_3 NPs to the strong metal-support interactions between Ag and Fe_2O_3.  相似文献   
67.
An effective broad-spectrum fungicide, azoxystrobin (AZ), has been widely detected in aquatic ecosystems, potentially affecting the growth of aquatic microorganisms. In the present study, the eukaryotic alga Monoraphidium sp. and the cyanobacterium Pseudanabaena sp. were exposed to AZ for 7 days. Our results showed that 0.2–0.5 mg/L concentrations of AZ slightly inhibited the growth of Monoraphidium sp. but stimulated Pseudanabaena sp. growth. Meanwhile, AZ treatment effectively increased the secretion of total organic carbon (TOC) in the culture media of the two species, and this phenomenon was also found in a freshwater microcosm experiment (containing the natural microbial community). We attempted to assess the effect of AZ on the function of aquatic microbial communities through metabolomic analysis and further explore the potential risks of this compound. The metabonomic profiles of the microcosm indicated that the most varied metabolites after AZ treatment were related to the citrate cycle (TCA), fatty acid biosynthesis and purine metabolism. We thereby inferred that the microbial community increased extracellular secretions by adjusting metabolic pathways, which might be a stress response to reduce AZ toxicity. Our results provide an important theoretical basis for further study of fungicide stress responses in aquatic microcosm microbial communities, as well as a good start for further explorations of AZ detoxification mechanisms, which will be valuable for the evaluation of AZ environmental risk.  相似文献   
68.
The degradation of plastic debris may result in the generation of nanoplastics (NPs). Their high specific surface area for the sorption of organic pollutions and toxic heavy metals and possible transfer between organisms at different nutrient levels make the study of NPs an urgent priority. However, there is very limited understanding on the occurrence, distribution, abundant, and fate of NPs in the environment, partially due to the lack of suitable techniques for the separation and identification of NPs from complex environmental matrices. In this review, we first overviewed the state-of-the-art methods for the extraction, separation, identification and quantification of NPs in the environment. Some of them have been successfully applied for the field determination of NPs, while some are borrowed from the detection of microplastics or engineered nanomaterials. Then the possible fate and transport of NPs in the environment are thoroughly described. Although great efforts have been made during the recent years, large knowledge gaps still exist, such as the relatively high detection limit of existing method failing to detect ultralow masses of NPs in the environment, and spherical polystyrene NP models failing to represent the various compositions of NPs with different irregular shapes, which needs further investigation.  相似文献   
69.
保定市大气污染特征和潜在输送源分析   总被引:1,自引:0,他引:1       下载免费PDF全文
保定市是京津冀地区重要城市之一.为了解保定市大气污染物质量浓度特征和潜在输送源,对保定市国控点2017年1月1日-12月31日PM10、PM2.5、SO2、NO2、O3、CO等常规大气污染物数据进行分析,并利用TrajStat后向轨迹模型进行区域传输研究.结果表明:①ρ(PM10)、ρ(PM2.5)、ρ(SO2)、ρ(NO2)分别为(138±96)(84±66)(29±23)和(50±24)μg/m3,与2016年相比分别下降5.9%、9.1%、25.5%和13.1%;ρ(CO)较2016年下降了14.0%;ρ(O3)较2016年增长了25.2%.ρ(PM10)、ρ(PM2.5)、ρ(NO2)和ρ(O3)分别超过GB 3095-2012《环境空气质量标准》二级标准限值的0.97、1.40、0.25和0.34倍,ρ(SO2)和ρ(CO)未超标.②除ρ(O3)外,其他污染物质量浓度均呈冬季最高、夏季最低的季节性特征,其中,冬季PM2.5污染最为严重,春季PM2.5~10(粗颗粒物)污染严重.③空气质量模型源解析结果显示,保定市ρ(PM2.5)约60.0%~70.0%来自本地污染源排放.后向轨迹结果表明,在外来区域传输影响中,保定市主要受到西北方向气团(占比为21.7%~60.0%)远距离传输和正南方向气团(占比为34.8%~50.5%)近距离传输的影响.④PSCF(潜在源贡献因子分析法)和CWT(浓度权重轨迹分析法)分析表明,除保定市及周边区县本地污染贡献外,位于太行山东麓沿线西南传输通道的邯郸市、邢台市、石家庄市是影响保定市PM2.5的主要潜在源区.研究显示,PM2.5为保定市大气中的主要污染物,并呈冬季高、夏季低的变化特征,其主要来自西北远距离输送和南部近距离传输.   相似文献   
70.
达里诺尔湖水体DOM荧光特征及其来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
孙伟  胡泓  赵茜  王璐  夏瑞  王晓  卜利胜  薛婕 《环境科学研究》2020,33(9):2084-2093
达里诺尔湖(简称“达里湖”)是内蒙古自治区高原地区重要的生态屏障,探究达里湖水质状况及污染来源,对加强流域水环境治理、改善水环境质量具有十分重要的意义.于2018年9月及2019年6月对湖水进行采样,并通过三维荧光光谱结合PARAFAC(平行因子分析)模型,探究达里湖水体DOM(溶解性有机质)来源及其与水质的关系.结果表明:①达里湖水体中pH较高,ρ(DOC)(DOC为溶解性有机碳)、ρ(NH4+-N)、ρ(TP)相对较高,均超过GB 3838—2002《地表水环境质量标准》Ⅴ类水质标准限值.②水体中DOM含4种荧光组分.夏季水体DOM主要分布于河流入湖口附近,其中,类腐殖质荧光组分(紫外区类富里酸和可见区类富里酸)占总组分的62.93%,类蛋白类荧光组分(类色氨酸和类酪氨酸)占总组分的36.07%;秋季水体DOM主要分布于东南侧,其中,类腐殖质荧光组分占总组分的40.52%,类蛋白类荧光组分占总组分的59.48%.③达里湖采样点荧光参数表明,达里湖DOM自生源特征较强,腐殖化程度较低.类腐殖质荧光组分与ρ(DOC)、ρ(Chla)均呈正相关,类色氨酸荧光组分与pH呈正相关,类络氨酸与ρ(DTN)、ρ(NH4+-N)、ρ(DTP)均呈正相关.研究显示,达里湖DOM具有陆源与生物源双重特性,DOM的形成与微生物、细菌、浮游生物的生命活动密切相关.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号