首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   2篇
  国内免费   1篇
安全科学   3篇
废物处理   13篇
环保管理   7篇
综合类   17篇
基础理论   24篇
污染及防治   54篇
评价与监测   16篇
社会与环境   10篇
  2023年   2篇
  2022年   9篇
  2021年   16篇
  2020年   7篇
  2019年   6篇
  2018年   9篇
  2017年   11篇
  2016年   9篇
  2015年   8篇
  2014年   6篇
  2013年   14篇
  2012年   10篇
  2011年   8篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2007年   6篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  1997年   1篇
排序方式: 共有144条查询结果,搜索用时 234 毫秒
1.
Brazil hosts the largest expanse of tropical ecosystems within protected areas (PAs), which shelter biodiversity and support traditional human populations. We assessed the vulnerability to climate change of 993 terrestrial and coastal-marine Brazilian PAs by combining indicators of climatic-change hazard with indicators of PA resilience (size, native vegetation cover, and probability of climate-driven vegetation transition). This combination of indicators allows the identification of broad climate-change adaptation pathways. Seventeen PAs (20,611 km2) were highly vulnerable and located mainly in the Atlantic Forest (7 PAs), Cerrado (6), and the Amazon (4). Two hundred fifty-eight PAs (756,569 km2), located primarily in Amazonia, had a medium vulnerability. In the Amazon and western Cerrado, the projected severe climatic change and probability of climate-driven vegetation transition drove vulnerability up, despite the generally good conservation status of PAs. Over 80% of PAs of high or moderate vulnerability are managed by indigenous populations. Hence, besides the potential risks to biodiversity, the traditional knowledge and livelihoods of the people inhabiting these PAs may be threatened. In at least 870 PAs, primarily in the Atlantic Forest and Amazon, adaptation could happen with little or no intervention due to low climate-change hazard, high resilience status, or both. At least 20 PAs in the Atlantic Forest, Cerrado, and Amazonia should be targeted for stronger interventions (e.g., improvement of ecological connectivity), given their low resilience status. Despite being a first attempt to link vulnerability and adaptation in Brazilian PAs, we suggest that some of the PAs identified as highly or moderately vulnerable should be prioritized for testing potential adaptation strategies in the near future.  相似文献   
2.
Environmental Science and Pollution Research - Methylmercury (MeHg) is a well-known environmental pollutant associated with neurological and developmental deficits in animals and humans. However,...  相似文献   
3.
Environmental Science and Pollution Research - Banana is one of the most important agricultural products of Ecuador. It relies on intensive monoculture cropping systems with a large volume of...  相似文献   
4.
The inadequate and indiscriminate disposal of sugarcane vinasse in soils and water bodies has received much attention since decades ago, due to environmental problems associated to this practice. Vinasse is the final by-product of the biomass distillation, mainly for the production of ethanol, from sugar crops (beet and sugarcane), starch crops (corn, wheat, rice, and cassava), or cellulosic material (harvesting crop residues, sugarcane bagasse, and wood). Because of the large quantities of vinasse produced, alternative treatments and uses have been developed, such as recycling of vinasse in fermentation, fertirrigation, concentration by evaporation, and yeast and energy production. This review was aimed at examining the available data on the subject as a contribution to update the information on sugarcane vinasse, from its characteristics and chemical composition to alternatives uses in Brazil: fertirrigation, concentration by evaporation, energy production; the effects on soil physical, chemical and biological properties; its influence on seed germination, its use as biostimulant and environmental contaminant. The low pH, electric conductivity, and chemical elements present in sugarcane vinasse may cause changes in the chemical and physical–chemical properties of soils, rivers, and lakes with frequent discharges over a long period of time, and also have adverse effects on agricultural soils and biota in general. Thus, new studies and green methods need to be developed aiming at sugarcane vinasse recycling and disposal.  相似文献   
5.
The effect of organic loading on the performance of a mechanically stirred anaerobic sequencing biofilm batch reactor (ASBBR) has been investigated, by varying influent concentration and cycle period. For microbial immobilization 1-cm polyurethane foam cubes were used. An agitation rate of 500 rpm and temperature of 30+/-2 degrees C were employed. Organic loading rates (OLR) of 1.5-6.0gCODl(-1)d(-1) were applied to the 6.3-l reactor treating 2.0 l synthetic wastewater in 8 and 12-h batches and at concentrations of 500-2000mgCODl(-1), making it possible to analyze the effect of these two operation variables for the same organic loading range. Microbial immobilization on inert support maintained approximately 60 gTVS in the reactor. Filtered sample organic COD removal efficiencies ranged from 73 to 88% for organic loading up to 5.4gCODl(-1)d(-1). For higher organic loading (influent concentration of 2000mgCODl(-1) and 8-h cycle) the system presented total volatile acids accumulation, which reduced organics removal efficiency down to 55%. In this way, ASBBR with immobilized biomass was shown to be efficient for organic removal at organic loading rates of up to 5.4gCODl(-1)d(-1) and to be more stable to organic loading variations for 12-h cycles. This reactor might be an alternative to intermittent systems as it possesses greater operational flexibility. It might also be an alternative to batch systems suspended with microorganisms since it eliminates both the uncertainties regarding granulation and the time necessary for biomass sedimentation, hence reducing the total cycle period.  相似文献   
6.
Mercury (Hg) is a hazardous chemical that accumulates in many cells and tissues, thereby producing toxicity. The kidney is a key target organ for Hg accumulation and toxicity. The contributing factors to Hg accumulation in humans include: (1) elemental and inorganic Hg exposure, often occurring by inhalation of Hg vapors; (2) exposure to methyl Hg (meHg), for example, through contaminated seafood; and (3) exposure to ethyl mercury (etHg) via thimerosal-containing vaccines. Systematic investigations on the toxic effects of etHg/thimerosal on the nervous system were carried out, and etHg/thimerosal emerged as a possible risk factor for autism and other neurodevelopmental disorders. There is, however, little known about the mechanisms and molecular interactions underlying toxicity of etHg/thimerosal in the kidney, which is the focus of the current review. Susceptible populations such as infants, pregnant women, and the elderly are exposed to etHg through thimerosal-containing vaccines, and in-depth study of the potential adverse effects on the kidney is needed. In general, toxicity occurring in association with different forms of Hg is related to: intracellular thiol metabolism and oxidative stress reactions; mitochondrial function; intracellular distribution and build-up of calcium; apoptosis; expression of stress proteins; and also interaction with the cytoskeleton. Available evidence for the etHg-induced toxicity in the kidney was examined, and the main mechanisms and molecular interactions of cytotoxicity of etHg/thimerosal exposure in kidney described. Such accumulating knowledge may help to indicate molecular pathways that, if modulated, may better handle Hg-mediated toxicity.  相似文献   
7.
8.
In this study the use of 'cleaned' end of life (EOL) cathode ray tube (CRT) glass as a raw material in ceramic glazes is described. At present, the recycling and industrial utilization of CRT, a glass material from TV and computer sets, is a subject of intense research with particular regard to the so-called open-loop recycling, namely cycles different from that of the origin. However, the use of CRT glass as a secondary raw material is strictly related to the demand of high-quality raw material. The good preliminary results reached by introducing clean TV and PC monitor panel and cone glass into ceramic glaze formulations pushed research toward the setting-up of a base glaze that is exploitable for the production of pigmented, silk-screened and flame-hardened glazes (products used industrially for coating floor tiles). The aesthetic and chemical characterization of the tiles glazed by this product showed an extremely similar behaviour to originals that did not contain CRT glass. The good technical results achieved have been supported by the life cycle assessment analysis, which has demonstrated a reduction of the environmental impact of the CRT glass-containing ceramic glaze with respect to the standard one.  相似文献   
9.
10.
Scientific and technological researches are devoted to obtain materials capable of retaining different kinds of pollutants, contributing to contamination solutions. In this context, hydrogels have emerged as great candidates because of their excellent absorption properties as well as good mechanical, thermal and chemical properties. More specifically, ferrogels (magnetic gels) present the extra advantage of being easily manipulated by a permanent magnet. Here, we present the results derived from the application of ferrogels as efficient tools to extract heavy metal pollutants from wastewater samples. The gels were prepared following the method of freezing and thawing of a polyvinyl alcohol aqueous solution with magnetic nanoparticles coated with polyacrylic acid. Ferrogels were fully characterized and their ability to retain Cu2+ and Cd2+, as model heavy metals, was studied. Thus kinetics and mechanisms of adsorption were evaluated and modeled. The concentration of MNPs on the PVA matrix was key to improve the adsorption capability (approximately the double of retention is improved by the MNPs addition). The adsorption kinetics was determined as pseudo-second order model, whereas the Langmuir model was the most appropriate to explain the behavior of the gels. Finally reuse ability was evaluated to determine the real potential of these materials, the ferrogels demonstrated high efficiency up to about five cycles, retaining about 80–90% of their initial adsorption capability. All the results indicated that the materials are promising candidates able to compete with the commercial technology regarding to water remediation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号