首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
环保管理   5篇
综合类   3篇
基础理论   5篇
污染及防治   5篇
评价与监测   2篇
  2023年   2篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2010年   2篇
  2009年   1篇
  2006年   2篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1985年   1篇
排序方式: 共有20条查询结果,搜索用时 218 毫秒
11.
The aim of this study was to determine the effects of ozone and salinity, singly and in combination, on the growth and ion contents of two chickpea (Cicer arietinum L.) varieties. Chickpea plants were grown in non-saline and saline conditions, with and without a repeated exposure to ozone. Salinity at a concentration of 30 mM NaCl caused a substantial reduction in plant height, number of leaves and the dry weights of the leaves, stems and roots. Biomass allocation to the leaves increased, predominantly at the expense of the roots. Ozone at a concentration of 85 nmol mol(-1) for 6 h per day for 25 days reduced plant height and dry weights but had no effect on leaf number. The results show substantial effects of salinity and ozone on chickpea growth and ion concentrations. When ozonated plants are grown in the presence of salinity, further reductions in growth occur.  相似文献   
12.
13.
Establishment of a petroleum refinery in 1916 near the headwaters of Bayou Trepagnier with subsequent dredging of the bayou resulted in spoil banks containing high levels of Pb. A large swamp abuts the eastern bank of the bayou. Cores were taken from 15 baldcypress [Taxodium distichum (L.) Richard] trees growing in the swamp along a 610-m transect (nine trees) and a 183-m transect (six trees) running perpendicular from the spoil bank. The cores were crossdated, annual rings were measured, and 5-yr segments of the cores were prepared and analyzed for heavy metals. Soil samples were collected along one transect and analyzed for metals. Levels of Pb in Bayou Trepagnier swamp trees were compared to levels in nine baldcypress trees growing along Stinking Bayou, a reference area. During the last 100 yr, Pb in growth rings of swamp baldcypress trees averaged 8.6 mg/kg (SD 4.88) along one transect and 7.9 mg/kg (SD 5.39) along the other. Lead in the soil along the first transect dropped from >2700 mg/kg (spoil bank) to 10 mg/kg at 420 m into the swamp. Baldcypress trees growing near the refinery on the spoil bank along Bayou Trepagnier (covered in an earlier study) averaged 4.5 mg/kg Pb, and trees along Stinking Bayou averaged 2.1 mg/kg. Trees in the swamp soil with 10 to 425 mg/kg Pb concentrated much more Pb than trees growing on the heavily polluted bank. Greater uptake of Pb by trees in the swamp is discussed in terms of soil dynamics and Pb sources.  相似文献   
14.
The relevance of germination trials for screening plants that may have potential for use in the phytoremediation of PAH contaminated land was evaluated. The germination and subsequent growth of 7 grass and legume species were evaluated in soil spiked with a pure PAH mixture or coal tar and soil from a former coking plant heavily contaminated with aged PAHs. None of these treatments adversely affected germination of the plants. However, apart from Lolium perenne all species exhibited reduced growth in the coking plant soil after 12 weeks growth when compared to the untreated soil. In the coal tar spiked soil 4 out of the 7 species showed reduced growth, as did 3 out of the 7 in the soil spiked with a mixture of 7 PAHs. Therefore, germination studies alone would not predict the success of subsequent growth of the species tested in the ranges of soil PAH levels studied.  相似文献   
15.
Operational forecast models require robust, computationally efficient, and reliable algorithms. We desire accurate forecasts within the limits of the uncertainties in channel geometry and roughness because the output from these algorithms leads to flood warnings and a variety of water management decisions. The current operational Water Model uses the Muskingum-Cunge method, which does not account for key hydraulic conditions such as flow hysteresis and backwater effects, limiting its ability in situations with pronounced backwater effects. This situation most commonly occurs in low-gradient rivers, near confluences and channel constrictions, coastal regions where the combined actions of tides, storm surges, and wind can cause adverse flow. These situations necessitate a more rigorous flow routing approach such as dynamic or diffusive wave approximation to simulate flow hydraulics accurately. Avoiding the dynamic wave routing due to its extreme computational cost, this work presents two diffusive wave approaches to simulate flow routing in a complex river network. This study reports a comparison of two different diffusive wave models that both use a finite difference solution solved using an implicit Crank–Nicolson (CN) scheme with second-order accuracy in both time and space. The first model applies the CN scheme over three spatial nodes and is referred to as Crank–Nicolson over Space (CNS). The second model uses the CN scheme over three temporal nodes and is referred to as Crank–Nicolson over Time (CNT). Both models can properly account for complex cross-section geometry and variable computational points spacing along the channel length. The models were tested in different watersheds representing a mixture of steep and flat topographies. Comparing model outputs against observations of discharges and water levels indicated that the models accurately predict the peak discharge, peak water level, and flooding duration. Both models are accurate and computationally stable over a broad range of hydraulic regimes. The CNS model is dependent on the Courant criteria, making it less computational efficient where short channel segments are present. The CNT model does not suffer from that constraint and is, thus, highly computationally efficient and could be more useful for operational forecast models.  相似文献   
16.
Model simulations performed representing dairies in a 93000 ha watershed in north central Texas suggest that manure incorporation results in reduced phosphorus (P) losses at relatively small to moderate cost to producers. Simulated manure incorporation with a tandem disk on fields double-cropped with sorghum/winter wheat resulted in up to 33, 45, and 37% reductions in per hectare sediment-bound, soluble, and total P losses in edge-of-field runoff, relative to simulated surface manure applications. The effects of incorporation were evaluated at three different manure application rates. On aggregate across all three manure application rates, significant declines in P losses were obtained with incorporation except for sediment-bound P losses under the N-based manure application rate scenario.We found that the practice of incorporating manure shortly after it has been broadcast on the soil surface could help reduce P losses in such situations where P-based rates alone prove inadequate. The cost the producer incurs when manure is incorporated is on average about 1% of net returns when manure is applied at the N rate and 2-3% when it is applied at alternative P-based rates. In practice the costs could be lower because producers may substitute the manure incorporation operation for a tandem disk operation performed prior to manure application. As more and more dairy producers switch to the use of sorghum and corn silage in dairy rations and consequent on-farm production of these forages, the practice of manure incorporation may help to reduce phosphorus losses resulting from dairy manure applications to fields with these forage crops.  相似文献   
17.
18.
Abstract: Human‐made objects (e.g., buildings with glass surfaces) can reflect horizontally polarized light so strongly that they appear to aquatic insects to be bodies of water. Insects that lay eggs in water are especially attracted to such structures because these insects use horizontal polarization of light off bodies of water to find egg‐laying sites. Thus, these sources of polarized light can become ecological traps associated with reproductive failure and mortality in organisms that are attracted to them and by extension with rapid population declines or collapse. Solar panels are a new source of polarized light pollution. Using imaging polarimetry, we measured the reflection–polarization characteristics of different solar panels and in multiple‐choice experiments in the field we tested their attractiveness to mayflies, caddis flies, dolichopodids, and tabanids. At the Brewster angle, solar panels polarized reflected light almost completely (degree of polarization d ≈100%) and substantially exceeded typical polarization values for water (d ≈30–70%). Mayflies (Ephemeroptera), stoneflies (Trichoptera), dolichopodid dipterans, and tabanid flies (Tabanidae) were the most attracted to solar panels and exhibited oviposition behavior above solar panels more often than above surfaces with lower degrees of polarization (including water), but in general they avoided solar cells with nonpolarizing white borders and white grates. The highly and horizontally polarizing surfaces that had nonpolarizing, white cell borders were 10‐ to 26‐fold less attractive to insects than the same panels without white partitions. Although solar panels can act as ecological traps, fragmenting their solar‐active area does lessen their attractiveness to polarotactic insects. The design of solar panels and collectors and their placement relative to aquatic habitats will likely affect populations of aquatic insects that use polarized light as a behavioral cue.  相似文献   
19.
The use of underwater optical sensors to monitor pollution and climate change processes has led to the development of robust instruments able to be deployed in lakes and seas for months at a time. However, despite this improvement in their durability they are subject to biofouling on their optical ports resulting in erroneous readings. The use of hydrogel coatings containing the cationic surfactant benzalkonium chloride (BAC) has been shown to prevent the development of biofouling for up to 12 weeks in the marine environment. In this study the use of hydrogel coatings in the freshwater environment was less successful with fouling visible at 2 weeks. In both field and laboratory studies a rapid initial loss of BAC from the hydrogel film was observed. The loss is a combination of diffusive and mass flow but the period from 12 to 50 h appeared to fit to diffusion kinetics and a diffusion coefficient of 7.3 x 10(-8) cm2 s(-1) (13 degrees C) was calculated, an order of 10 times greater than that found in seawater. Subsequently the rate of loss of the residual BAC, for which a diffusion coefficient of 5.7 x 10(-10) cm2 s(-1) (15 degrees C) was measured, was too low to prevent the early stages of biofouling.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号