首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13926篇
  免费   172篇
  国内免费   122篇
安全科学   395篇
废物处理   379篇
环保管理   2169篇
综合类   3331篇
基础理论   3305篇
环境理论   7篇
污染及防治   3542篇
评价与监测   630篇
社会与环境   390篇
灾害及防治   72篇
  2018年   140篇
  2017年   153篇
  2016年   207篇
  2015年   173篇
  2014年   221篇
  2013年   1043篇
  2012年   337篇
  2011年   479篇
  2010年   346篇
  2009年   445篇
  2008年   494篇
  2007年   525篇
  2006年   481篇
  2005年   357篇
  2004年   373篇
  2003年   416篇
  2002年   354篇
  2001年   482篇
  2000年   342篇
  1999年   232篇
  1998年   169篇
  1997年   159篇
  1996年   198篇
  1995年   193篇
  1994年   216篇
  1993年   189篇
  1992年   192篇
  1991年   186篇
  1990年   213篇
  1989年   205篇
  1988年   168篇
  1987年   169篇
  1986年   152篇
  1985年   171篇
  1984年   151篇
  1983年   165篇
  1982年   168篇
  1981年   165篇
  1980年   151篇
  1979年   151篇
  1978年   144篇
  1977年   132篇
  1976年   136篇
  1975年   115篇
  1974年   142篇
  1973年   125篇
  1972年   126篇
  1971年   106篇
  1970年   106篇
  1967年   116篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
741.
ABSTRACT

Recent experiments confirm field experience that duct cleaning alone may not provide adequate protection from regrowth of fungal contamination on fiberglass duct liner (FGDL). Current recommendations for remediation of fungally contaminated fiberglass duct materials specify complete removal of the materials. But removal of contaminated materials can be extremely expensive. Therefore, a common practice in the duct-cleaning industry is the postcleaning use of antimicrobial surface coatings with the implication that they may contain or limit regrowth.

Little information is available on the efficacy of these treatments. This paper describes a study to evaluate whether three commercially available antimicrobial coatings, placed on a cleaned surface that 1 year previously had been actively growing microorganisms, would be able to prevent regrowth. The three coatings contained different active antimicrobial compounds. All three of the coatings were designed for use on heating, ventilation, and air conditioning (HVAC) system components or interior surfaces of lined and unlined duct systems. Coating I was a polyacrylate copolymer containing zinc oxide and borates. Coating II was an acrylic coating containing decabromodiphenyl oxide and antimony trioxide. Coating III was an acrylic primer containing a phosphated quaternary amine complex.

The study included field and laboratory assessments. The three treatments were evaluated in an uncontrolled field setting in an actual duct system. The laboratory study broadened the field study to include a range of humidities under controlled conditions. Both static and dynamic chamber laboratory experiments were performed. The results showed that two of the three antimicrobial coatings limited the regrowth of fungal contamination, at least in the short term (the 3-month time span of the study); the third did not. Before use in the field, testing of the efficacy of antimicrobial coatings under realistic use conditions is recommended because antimicrobials have different baseline activities and interact differently with the substrate that contains them and their local environment.  相似文献   
742.
Abstract

In siting a monitor to measure compliance with U.S. National Ambient Air Quality Standards (NAAQS) for par-ticulate matter (PM), there is a need to characterize variations in PM concentration within a neighborhood-scale region to achieve monitor siting objectives. A simple methodology is provided here for the selection of a neighborhood-scale site for meeting either of the two objectives identified for PM monitoring. This methodology is based on analyzing middle-scale (from 100 to 500 m) data from within the area of interest. The required data can be obtained from widely available dispersion models and emissions databases.

The performance of the siting methodology was evaluated in a neighborhood-scale field study conducted in Hudson County, NJ, to characterize the area’s inhalable particulate (PM10) concentrations. Air monitors were located within a 2- by 2-km area in the vicinity of the Lincoln Tunnel entrance in Hudson County. Results indicate the siting methodology performed well, providing a positive relationship between the predicted concentration rank at each site and the actual rank experienced during the field study. Also discussed are factors that adversely affected the predictive capabilities of the model.  相似文献   
743.
Abstract

The multivariate receptor model Unmix has been used to analyze a 3-yr PM2.5 ambient aerosol data set collected in Phoenix, AZ, beginning in 1995. The analysis generated source profiles and overall average percentage source contribution estimates (SCEs) for five source categories: gasoline engines (33 ± 4%), diesel engines (16 ± 2%), secondary SO4 2? (19 ± 2%), crustal/soil (22 ± 2%), and vegetative burning (10 ± 2%). The Unmix analysis was supplemented with scanning electron microscopy (SEM) of a limited number of filter samples for information on possible additional low-strength sources. Except for the diesel engine source category, the Unmix SCEs were generally consistent with an earlier multivariate receptor analysis of essentially the same data using the Positive Matrix Factorization (PMF) model. This article provides the first demonstration for an urban area of the capability of the Unmix receptor model.  相似文献   
744.
745.
Abstract

This project demonstrated the biofiltration of a trichloroethylene (TCE)-contaminated airstream generated by air stripping groundwater obtained from several wells located at the Anniston Army Depot, Anniston, AL. The effects of several critical process variables were investigated to evaluate technical and economic feasibility, define operating limits and preferred operating conditions, and develop design information for a full-scale biofilter system. Long-term operation of the demonstration biofilter system was conducted to evaluate the performance and reliability of the system under variable weather conditions. Propane was used as the primary substrate necessary to induce the production of a nonspecific oxygenase. Results indicated that the process scheme used to introduce propane into the biofiltration system had a significant impact on the observed TCE removal efficiency. TCE degradation rates were dependent on the inlet contaminant concentration as well as on the loading rate. No microbial inhibition was observed at inlet TCE concentrations as high as 87 parts per million on a volume basis.  相似文献   
746.
Abstract

Real‐time concentrations of black carbon, particle‐bound polycyclic aromatic hydrocarbons, nitrogen dioxide, and fine particulate counts, as well as integrated and real‐time fine particulate matter (PM2.5) mass concentrations were measured inside school buses during long commutes on Los Angeles Unified School District bus routes, at bus stops along the routes, at the bus loading/unloading zone in front of the selected school, and at nearby urban “background” sites. Across all of the pollutants, mean concentrations during bus commutes were higher than in any other microenvironment. Mean exposures (mean concentration times time spent in a particular microenvironment) in bus commutes were between 50 and 200 times greater than those for the loading/unloading microenvironment, and 20–40 times higher than those for the bus stops, depending on the pollutant. Although the analyzed school bus commutes represented only 10% of a child’s day, on average they contributed one‐third of a child’s 24‐hr overall black carbon exposure during a school day. For species closely related to vehicle exhaust, the within‐cabin exposures were generally dominated by the effect of surrounding traffic when windows were open and by the bus’s own exhaust when windows were closed. Low‐emitting buses generally exhibited high concentrations only when traveling behind a diesel vehicle, whereas high‐emitting buses exhibited high concentrations both when following other diesel vehicles and when idling without another diesel vehicle in front of the bus. To reduce school bus commute exposures, we recommend minimizing commute times, avoiding caravanning with other school buses, using the cleanest buses for the longest bus routes, maintaining conventional diesel buses to eliminate visible emissions, and transitioning to cleaner fuels and advanced particulate control technologies as soon as possible.  相似文献   
747.
Abstract

The U.S. Environmental Protection Agency has established a federal reference method (FRM) for ozone (O3) and allowed for designation of federal equivalent methods (FEMs). However, the ethylene‐chemiluminescence FRM for O3 has been replaced by the UV photometric FEM by most state and local monitoring agencies because of its relative ease of operation. Accumulating evidence indicates that the FEM is prone to bias under the hot, humid, and stagnant conditions conducive to high O3 formation. This bias may lead to overreporting hourly O3 concentrations by as much as 20–40 ppb. Measurement bias is caused by contamination of the O3 scrubber, a problem that is not detected by dry air calibration. An adequate wet test has not been codified, although a procedure has been proposed for agency consideration. This paper includes documentation of laboratory tests quantifying specific interferant responses, collocated ambient FRM/FEM monitoring results, and smog chamber comparisons of the FRM and FEMs with alternative scrubber designs. As the numbers of reports on monitor interferences have grown, interested parties have called for agency recognition and correction of these biases.  相似文献   
748.
749.
Abstract

Recently, a comprehensive air quality modeling system was developed as part of the Southern Appalachians Mountains Initiative (SAMI) with the ability to simulate meteorology, emissions, ozone, size- and composition-resolved particulate matter, and pollutant deposition fluxes. As part of SAMI, the RAMS/EMS-95/URM-1ATM modeling system was used to evaluate potential emission control strategies to reduce atmospheric pollutant levels at Class I areas located in the Southern Appalachians Mountains. This article discusses the details of the ozone model performance and the methodology that was used to scale discrete episodic pollutant levels to seasonal and annual averages. The daily mean normalized bias and error for 1-hr and 8-hr ozone were within U.S. Environment Protection Agency guidance criteria for urban-scale modeling. The model typically showed a systematic overestimation for low ozone levels and an underestimation for high levels. Because SAMI was primarily interested in simulating the growing season ozone levels in Class I areas, daily and seasonal cumulative ozone exposure, as characterized by the W126 index, were also evaluated. The daily ozone W126 performance was not as good as the hourly ozone performance; however, the seasonal ozone W126 scaled up from daily values was within 17% of the observations at two typical Class I areas of the SAMI region. The overall ozone performance of the model was deemed acceptable for the purposes of SAMI’s assessment.  相似文献   
750.
Abstract

The research objective was to adapt the ultraviolet (UV)photolysis method to determine dissolved organic nitrogen (DON) in aqueous extracts of aerosol samples. DON was assumed to be the difference in total concentration of inorganic nitrogen forms before and after sample irradiation. Using a 22 factorial design the authors found that the optimal conversion of urea, amino acids (alanine, aspartic acid, glycine, and serine), and methylamine for a reactor temperature of 44 °C occurred at pH 2.0 with a 24-hr irradiance period at concentrations < µM of organic nitrogen. Different decomposition mechanisms were evident: the photolysis of amino acids and methylamine released mainly ammonium (NH4 +), but urea released a near equimolar ratio of NH4 + and nitrate (NO3 ?). The method was applied to measure DON in the extracts of aerosol samples from Tampa, FL, over a 32-day sampling period. Average dissolved inorganic (DIN) and DON concentrations in the particulate matter fraction PM10 were 78.1 ± 29.2 nmol-Nm?3and 8.3 ± 4.9 nmol-Nm?3, respectively. The ratio between DON and total dissolved nitrogen ([TDN] = DIN + DON) was 10.1 ± 5.7%, and the majority of the DON (79.1 ± 18.2%) was found in the fine particulate matter (PM2.5) fraction. The average concentrations of DIN and DON in the PM2.5 fraction were 54.4 ± 25.6 nmol-Nm?3 and 6.5 ± 4.4 nmol-Nm?3, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号