首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   865篇
  免费   3篇
  国内免费   3篇
安全科学   16篇
废物处理   16篇
环保管理   133篇
综合类   273篇
基础理论   151篇
污染及防治   203篇
评价与监测   47篇
社会与环境   25篇
灾害及防治   7篇
  2020年   7篇
  2018年   16篇
  2017年   10篇
  2016年   16篇
  2015年   13篇
  2014年   20篇
  2013年   68篇
  2012年   23篇
  2011年   31篇
  2010年   23篇
  2009年   26篇
  2008年   33篇
  2007年   35篇
  2006年   19篇
  2005年   21篇
  2004年   35篇
  2003年   19篇
  2002年   24篇
  2001年   12篇
  2000年   13篇
  1999年   18篇
  1998年   8篇
  1997年   13篇
  1996年   17篇
  1995年   12篇
  1994年   25篇
  1993年   8篇
  1991年   7篇
  1990年   8篇
  1988年   7篇
  1983年   7篇
  1982年   6篇
  1981年   9篇
  1980年   9篇
  1979年   7篇
  1978年   7篇
  1977年   7篇
  1968年   6篇
  1965年   6篇
  1964年   9篇
  1963年   6篇
  1962年   6篇
  1961年   6篇
  1960年   8篇
  1959年   11篇
  1957年   7篇
  1956年   11篇
  1954年   9篇
  1939年   6篇
  1924年   6篇
排序方式: 共有871条查询结果,搜索用时 62 毫秒
191.
北极生态系统的生物和物理过程会在不同的时间、空间尺度上对地球生态系统产生反馈作用,并与之相互影响.气候变化对北极地区的影响及其对全球气候系统的反馈主要存在着四种潜在机制反照率改变、生态系统对温室气体的排放或吸收、甲烷类温室气体的排放、影响海洋暖流淡水量的增长.这些反馈机制在某种程度上是由生态系统的分布和特征,尤其是大规模植被区域变化来控制的.通过少量全年的CO2通量测量表明,目前在地理分布上碳源区要比碳汇区要多.根据目前现有的关于CH4排放源地信息表明,景观规模上的CH4排放量对北极地区的温室效应平衡至关重要.北极地区的能量和水量平衡在变化的气候下,也是一个很重要的反馈机制.植被密度以及分布范围的增加会导致反射率的下降,因而会使地表吸收更多的能量.其效果可能会抵消由于极地沙漠地带向极地苔原带的的转化,或极地苔原带向极地森林带的转化,而造成的植被总净初级生产力碳沉降能力的提高而引起的负反馈.永久冻土带的退化对示踪气体动力学有着很复杂的影响.在不连续的永久冻土带地区,升温将会导致其完全消失.依赖于当地水文条件,温室气体排放可能由于气候环境变的干燥或湿润而使得其通量有所变化.总的来说,影响反馈的各种过程复杂的相互作用,以及这些过程随着时间地点的变化,加之数据的缺乏,又会在陆地生态系统气候变化对气候系统产生反馈作用的净效应估计上,产生许多的不确定性,这种不确定性将会影响到一些反馈的大小和方向.  相似文献   
192.
The nematode Caenorhabditis elegans was exposed over a whole fife-cycle (72 h) to several concentrations of 4-nonylphenol (NP; nominal concentrations: 0-350 microg/l). Growth and reproduction of C. elegans were enhanced at NP concentrations of 66 and 40 microg/l, respectively, with effects showing dose-response relationships. These stimulatory effects might be of ecological relevance in benthic habitats, where organisms can be exposed to high concentrations of NP.  相似文献   
193.
Sorption equilibria and rates were characterized for a matrix of four aquifer sands and two slightly to moderately hydrophobic organic solutes (nitrobenzene and lindane), and the effects of sorption on the behavior of these solutes in saturated systems of the soils were determined. Experimental data were used to test and evaluate a variety of mathematical models for predicting contaminant fate and transport in groundwater systems.Observed equilibrium relationships between soil and solution phase solute concentrations were found to be described best by the nonlinear Freundlich isotherm model. It was further determined that the sorption process in the systems tested is rate controlled, requiring several days to approach equilibrium in completely mixed batch reactors. Subsequent modeling of solute transport in continuous flow soil column reactors was found to be most successful when rate-controlled models were used, the best results were obtained with a dual-resistance model incorporating the coupled mass transport steps of boundary-layer and intraparticle diffusion.  相似文献   
194.
Historically, the function of Arctic ecosystems in terms of cycles of nutrients and carbon has led to low levels of primary production and exchanges of energy, water and greenhouse gases have led to low local and regional cooling. Sequestration of carbon from atmospheric CO2, in extensive, cold organic soils and the high albedo from low, snow-covered vegetation have had impacts on regional climate. However, many aspects of the functioning of Arctic ecosystems are sensitive to changes in climate and its impacts on biodiversity. The current Arctic climate results in slow rates of organic matter decomposition. Arctic ecosystems therefore tend to accumulate organic matter and elements despite low inputs. As a result, soil-available elements like nitrogen and phosphorus are key limitations to increases in carbon fixation and further biomass and organic matter accumulation. Climate warming is expected to increase carbon and element turnover, particularly in soils, which may lead to initial losses of elements but eventual, slow recovery. Individual species and species diversity have clear impacts on element inputs and retention in Arctic ecosystems. Effects of increased CO2 and UV-B on whole ecosystems, on the other hand, are likely to be small although effects on plant tissue chemisty, decomposition and nitrogen fixation may become important in the long-term. Cycling of carbon in trace gas form is mainly as CO2 and CH4. Most carbon loss is in the form of CO2, produced by both plants and soil biota. Carbon emissions as methane from wet and moist tundra ecosystems are about 5% of emissions as CO2 and are responsive to warming in the absence of any other changes. Winter processes and vegetation type also affect CH4 emissions as well as exchanges of energy between biosphere and atmosphere. Arctic ecosystems exhibit the largest seasonal changes in energy exchange of any terrestrial ecosystem because of the large changes in albedo from late winter, when snow reflects most incoming radiation, to summer when the ecosystem absorbs most incoming radiation. Vegetation profoundly influences the water and energy exchange of Arctic ecosystems. Albedo during the period of snow cover declines from tundra to forest tundra to deciduous forest to evergreen forest. Shrubs and trees increase snow depth which in turn increases winter soil temperatures. Future changes in vegetation driven by climate change are therefore, very likely to profoundly alter regional climate.  相似文献   
195.
Hierarchical models are considered for estimating the probability of agreement between two outcomes or endpoints from an environmental toxicity experiment. Emphasis is placed on generalized regression models, under which the prior mean is related to a linear combination of explanatory variables via a monotone function. This function defines the scale over which the systematic effects are modelled as additive. Specific illustration is provided for the logistic link function. The hierarchical model employs a conjugate beta prior that leads to parametric empirical Bayes estimators of the individual agreement parameters. An example from environmental carcinogenesis illustrates the methods, with motivation derived from estimation of the concordance between two species carcinogenicity outcomes. Based on a large database of carcinogenicity studies, the inter-species concordance is seen to be reasonably informative, i.e. in the range 67–84%. Stratification into pertinent potency-related sub-groups via the logistic model is seen to improve concordance estimation: for environmental stimuli at the extremes of the potency spectrum, concordance can reach well above 90%.  相似文献   
196.
197.
198.
199.
The need for statistical methodology in environmental and ecological applications has grown dramatically over the past few decades, to where targeted and/or specialized courses in environmental statistics are necessary at both the undergraduate and graduate levels. We discuss here the construction of such courses, and pose questions on the course development process for the statistical and environmental community. Our exposition is based upon our own experience with the design of a graduate environmental statistics course.  相似文献   
200.
Summary Social groups of alpine marmots (Marmota marmota) were studied for 7 years. The groups consisted of a territorial pair and up to 18 lower ranking animals of various ages, mostly the pair's offspring (Tables 1, 2). Group members lived in a common home range and always hibernated together in one hibernaculum. Groups with older, subordinate animals experienced slightly higher summer mortality but significantly reduced winter mortality (Fig. 1). Infant winter mortality was further decreased if most older subordinates were potentially their full sibs (Fig. 2). Subordinate group members lost less mass during winter with increasing size of the hibernating group, but this trend was reversed when infants were present. Furthermore, augmented mass loss due to low hibernaculum quality became evident (Fig. 3). Apart from these effects, the presence of infants caused additional mass loss in potential full sibs. The opposite was found in subordinates certainly descending from other parents than those of the infants (Table 3).Winter mortality and mass loss data revealed (i) a general benefit of joint hibernation, (ii) an unavoidable cost of infants' presence to other group members, (iii) that only potential full sibs helped in warming infants, (iv) that helping was energetically expensive and increased infant survival. The evolution of postponed dispersal in ground-dwelling squirrels has been attributed to the direct fitness gained by enhanced reproductive chances of offspring when not expelled from the natal territory (Armitage 1981, 1987, 1988). This study shows that group living in alpine marmots has benefits during winter and indicates the additional importance of kin selection in marmot social evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号