首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   0篇
  国内免费   2篇
安全科学   6篇
废物处理   22篇
环保管理   27篇
综合类   52篇
基础理论   54篇
污染及防治   65篇
评价与监测   19篇
社会与环境   4篇
  2023年   1篇
  2022年   8篇
  2021年   8篇
  2020年   5篇
  2019年   8篇
  2018年   4篇
  2017年   10篇
  2016年   15篇
  2015年   13篇
  2014年   17篇
  2013年   24篇
  2012年   9篇
  2011年   11篇
  2010年   9篇
  2009年   15篇
  2008年   18篇
  2007年   10篇
  2006年   12篇
  2005年   9篇
  2004年   8篇
  2003年   7篇
  2002年   6篇
  1999年   1篇
  1998年   2篇
  1994年   1篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1986年   4篇
  1984年   1篇
  1961年   1篇
  1960年   1篇
  1940年   1篇
  1938年   2篇
排序方式: 共有249条查询结果,搜索用时 15 毫秒
241.
Measurement campaigns for airborne particles along a pedestrian route in the city center of Milan were performed by means of a portable instrument consisting of an optical particle counter and a global positioning system (GPS) signal receiver. Based on the size-resolved particle number concentration data and on proper density factors experimentally determined for Milan urban area, the mass concentrations were calculated in terms of particulate matter with aerodynamic diameters < or =10 microm (PM10), < or =2.5 pm (PM2.5), and < or =1 microm (PM1). Besides directly measuring the personal exposure to PM throughout the route, the measurement campaigns pointed out small spatial and temporal variations of the concentration ranges in the different urban microenvironments visited along the route as well as very peculiar features of the particles levels in the underground subway. These findings suggested that the personal exposure of pedestrians in the city center could be estimated by simply taking into account the exposure at the open air and in the subway. The comparison between measured and calculated exposures according to the microenvironment-based estimation results in reasonable accordance, even though the estimations tend to slightly underestimate (12%) the actual measured exposure.  相似文献   
242.
The purpose of the present work is to asses the possibility of detecting changes in soil organic carbon (SOC) at the end of the 5-years of the first Commitment Period (CP) of the Kyoto Protocol of the United Nation’s Framework Convention on Climate Change (1 January, 2008–31 December, 2012), by both direct measurement and the use of an opportunely evaluated SOC model, CENTURY. The investigated soil is young, developed since 28 years on virtually C-free spoil banks and under the influence of two managed forest stands, one a mix of English oak (Quercus robur L.) and Italian alder (Alnus cordata Loisel.) and the other pure English oak. The SOC stock of either stand was monitored since the time the stands were planted in 1981, and it was used together with other parameters for the model evaluation, while the future projections for the end of the first (2012) and second (2017) CP were made according to two extreme IPCC climatic scenarios: A1F1, the most dramatic, and B2, among the less impacting. Direct SOC measurements performed at the beginning and at the end of a time frame equivalent to a commitment period (2004–2008) had not shown significant variations in either stands. Compared to the 2008 SOC stock, in both stands the model shows variations at the end of the first CP from 0.7 to 1.8 Mg C ha−1 for the A1F1 scenario and from 0.3 to 1.7 Mg C ha−1 for the B2. These variations are within the standard deviations of the C stocks measured in 2008. On the contrary, at the end of the second CP, the modelled SOC increments range from 2.5 to 3.6 Mg C ha−1 (A1F1) or from 1.9 to 3.4 Mg C ha−1 (B2), indicating the possibility to detect the SOC changes by direct measurement, since the values well agree with the minimum detectable variation estimated for both sites in 3.3–4.5 Mg C ha−1. This work shows that SOC stock changes measured directly in the field can be minimal at the end of both CPs, and that CENTURY well simulates the SOC dynamics of the stands. The use of such a model, validated at long-term experimental sites, hence represents an effective tool for estimating future changes in SOC amounts in support of direct measurements when a short period of time, such as the CP, is considered.  相似文献   
243.

Background, aim, and scope  

Biowaste contains compounds of agricultural value such as organic carbon, nutrients, and trace elements and can partially replace mineral fertilizer (MIN) and improve the physical properties of the soil. However, the obvious benefits of land spreading need to be carefully evaluated against potential adverse effects on the environment and human health. Environmental contamination resulting from biowaste application is one of the key variables when assessing cost/benefits. This study provides data on the resulting concentration of polychlorinated dibenzodioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in the soil column as a result of the different types of fertilizers.  相似文献   
244.
● Application of the MOF-composite membranes in adsorption was discussed. ● Recent application of MOFs-membranes for separation was summarized. ● Separation and degradation for emerging organic contaminants were described. Presence of emerging organic contaminants (EOCs) in water is one of the major threats to water safety. In recent decades, an increasing number of studies have investigated new approaches for their effective removal. Among them, metal-organic frameworks (MOFs) have attracted increasing attention since their first development thanks to their tunable metal nodes and versatile, functional linkers. However, whether or not MOFs have a promising future for practical application in emerging contaminants-containing wastewater is debatable. This review summarizes recent studies about the removal of EOCs using MOFs-related material. The synthesis strategies of both MOF particles and composites, including thin-film nanocomposite and mixed matrix membranes, are critically reviewed, as well as various characterization technologies. The application of the MOF-based composite membranes in adsorption, separation (nanofiltration and ultrafiltration), and catalytic degradation are discussed. Overall, literature survey shows that MOFs-based composite could play a crucial role in eliminating EOCs in the future. In particular, modified membranes that realize separation and degradation might be the most promising materials for such application.  相似文献   
245.
246.
In this work the dynamics of biochemical (enzymatic activities) and chemical (water-soluble fraction) parameters during 100 days of municipal solid wastes composting were studied to evaluate their suitability as tools for compost characterization. The hydrolase (protease, urease, cellulase, beta-glucosidase) and dehydrogenase activities were characterized by significant changes during the first 2 weeks of composting, because of the increase of easily decomposable organic compounds. After the 4th week a "maturation phase" was identified in which the enzymatic activities tended to gently decrease, suggesting the stabilisation of organic matter. Also the water-soluble fractions (water-soluble carbon, nitrogen, carbohydrates and phenols), which are involved in many degradation processes, showed major fluctuations during the first month of composting. The results obtained showed that the hydrolytic activities and the water-soluble fractions did not vary statistically during the last month of composting. Significant correlations between the enzymatic activities, as well as between enzyme activities and water-soluble fractions, were also highlighted. These results highlight the suitability of both enzymatic activities and water soluble fractions as suitable indicators of the state and evolution of the organic matter during composting. However, since in the literature the amount of each activity or fraction at the end of composting depends on the raw material used for composting, single point determinations appear inadequate for compost characterization. This emphasizes the importance of the characterization of the dynamics of enzymatic activities and water-soluble fractions during the process.  相似文献   
247.
Environmental Science and Pollution Research - COVID-19 pandemic has passed to the front all the contradictions of the beekeeping sector: the valuable role of bee products as immune enhancers and...  相似文献   
248.

Old forests containing ancient trees are essential ecosystems for life on earth. Mechanisms that happen both deep in the root systems and in the highest canopies ensure the viability of our planet. Old forests fix large quantities of atmospheric CO2, produce oxygen, create micro-climates and irreplaceable habitats, in sharp contrast to young forests and monoculture forests. The current intense logging activities induce rapid, adverse effects on our ecosystems and climate. Here we review large old trees with a focus on ecosystem preservation, climate issues, and therapeutic potential. We found that old forests continue to sequester carbon and fix nitrogen. Old trees control below-ground conditions that are essential for tree regeneration. Old forests create micro-climates that slow global warming and are irreplaceable habitats for many endangered species. Old trees produce phytochemicals with many biomedical properties. Old trees also host particular fungi with untapped medicinal potential, including the Agarikon, Fomitopsis officinalis, which is currently being tested against the coronavirus disease 2019 (COVID-19). Large old trees are an important part of our combined cultural heritage, providing people with aesthetic, symbolic, religious, and historical cues. Bringing their numerous environmental, oceanic, ecological, therapeutic, and socio-cultural benefits to the fore, and learning to appreciate old trees in a holistic manner could contribute to halting the worldwide decline of old-growth forests.

  相似文献   
249.

The coronavirus disease 2019 (COVID-19) is causing major sanitary and socioeconomic issues, yet some locations are less impacted than others. While densely populated areas are likely to favor viral transmission, we hypothesize that other environmental factors could explain lower cases in some areas. We studied COVID-19 impact and population statistics in highly forested Mediterranean Italian regions versus some northern regions where the amount of trees per capita is much lower. We also evaluated the affinity of Mediterranean plant-emitted volatile organic compounds (VOCs) isoprene, α-pinene, linalool and limonene for COVID-19 protein targets by molecular docking modeling. Results show that while mean death number increased about 4 times from 2020 to 2021, the percentage of deaths per population (0.06–0.10%) was lower in the greener Mediterranean regions such as Sardinia, Calabria and Basilica versus northern regions with low forest coverage, such as Lombardy (0.33%) and Emilia Romagna (0.29%). Data also show that the pandemic severity cannot be explained solely by population density. Modeling reveals that plant organic compounds could bind and interfere with the complex formed by the receptor binding domain of the coronavirus spike protein with the human cell receptor. Overall, our findings are likely explained by sea proximity and mild climate, Mediterranean diet and the abundance of non-deciduous Mediterranean plants which emit immunomodulatory and antiviral compounds. Potential implications include ‘forest bathing’ as a therapeutic practice, designing nasal sprays containing plant volatile organic compounds, and preserving and increasing forest coverage.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号