首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   263篇
  免费   0篇
  国内免费   2篇
安全科学   6篇
废物处理   23篇
环保管理   27篇
综合类   52篇
基础理论   63篇
污染及防治   66篇
评价与监测   22篇
社会与环境   6篇
  2023年   1篇
  2022年   9篇
  2021年   8篇
  2020年   5篇
  2019年   9篇
  2018年   5篇
  2017年   10篇
  2016年   16篇
  2015年   13篇
  2014年   17篇
  2013年   24篇
  2012年   10篇
  2011年   13篇
  2010年   10篇
  2009年   15篇
  2008年   21篇
  2007年   11篇
  2006年   13篇
  2005年   10篇
  2004年   9篇
  2003年   8篇
  2002年   6篇
  1999年   1篇
  1998年   2篇
  1994年   1篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1986年   4篇
  1984年   1篇
  1961年   1篇
  1960年   1篇
  1940年   1篇
  1938年   2篇
排序方式: 共有265条查询结果,搜索用时 15 毫秒
231.
A specific 2-year program to monitor and test both the vadose zone and the saturated zone, coupled with a numerical analysis, was performed to evaluate the overall performance of slurry wall systems for containment of contaminated areas. Despite local physical confinement (slurry walls keyed into an average 2-m-thick aquitard), for at least two decades, high concentrations of chlorinated solvents (up to 110 mg l − 1) have been observed in aquifers that supply drinking water close to the city of Milan (Italy). Results of monitoring and in situ tests have been used to perform an unsaturated-saturated numerical model. These results yielded the necessary quantitative information to be used both for the determination of the hydraulic properties of the different media in the area and for the calibration and validation of the numerical model. Backfill material in the shallower part of the investigated aquifer dramatically affects the natural recharge of the encapsulated area. A transient simulation from wet to drought periods highlights a change in the ratio between leakages from lateral barriers that support a specific scenario of water loss through the containment system. The combination of monitoring and modelling allows a reliable estimate of the overall performance of the physical confinement to be made without using any invasive techniques on slurry wall.  相似文献   
232.
Mathematical models were developed to simulate the production and dispersion of aerosol phase atmospheric pollutants which are the main cause of the deterioration of monuments of great historical and cultural value. This work focuses on Particulate Matter (PM) considered the primary cause of monument darkening. Road traffic is the greatest contributor to PM in urban areas. Specific emission and dispersion models were used to study typical urban configurations. The area selected for this study was the city of Florence, a suitable test bench considering the magnitude of architectural heritage together with the remarkable effect of the PM pollution from road traffic. The COPERT model, to calculate emissions, and the street canyon model coupled with the CALINE model, to simulate pollutant dispersion, were used. The PM concentrations estimated by the models were compared to actual PM concentration measurements, as well as related to the trend of some meteorological variables. The results obtained may be defined as very encouraging even the models correlated poorly: the estimated concentration trends as daily averages moderately reproduce the same trends of the measured values.  相似文献   
233.
234.
As pollution becomes one of the biggest environmental challenges of the twenty-first century, pollution of water threatens the very existence of humanity, making immediate action a priority. The most persistent and hazardous pollutants come from industrial and agricultural activities; therefore, effective treatment of this wastewater prior to discharge into the natural environment is the solution. Advanced oxidation processes (AOPs) have caused increased interest due to their ability to degrade hazardous substances in contrast to other methods, which mainly only transfer pollution from wastewater to sludge, a membrane filter, or an adsorbent. Among a great variety of different AOPs, a group of electrochemical advanced oxidation processes (EAOPs), including electro-Fenton, is emerging as an environmental-friendly and effective treatment process for the destruction of persistent hazardous contaminants. The only concern that slows down a large-scale implementation is energy consumption and related investment and operational costs. A combination of EAOPs with biological treatment is an interesting solution. In such a synergetic way, removal efficiency is maximized, while minimizing operational costs. The goal of this review is to present cutting-edge research for treatment of three common and problematic pollutants and effluents: dyes and textile wastewater, olive processing wastewater, and pharmaceuticals and hospital wastewater. Each of these types is regarded in terms of recent scientific research on individual electrochemical, individual biological and a combined synergetic treatment.  相似文献   
235.
This study analyses social, economic and political “lock-ins” for understanding community resilience and land degradation. The study focuses on lock-ins from within communities, using four case study communities in Italy affected by land degradation. The analysis highlights the complex interrelationships between various lock-ins, and suggests that the communities are on declining resilience pathways that may lead to increasing difficulties in addressing land degradation issues in future.  相似文献   
236.
Measurement campaigns for airborne particles along a pedestrian route in the city center of Milan were performed by means of a portable instrument consisting of an optical particle counter and a global positioning system (GPS) signal receiver. Based on the size-resolved particle number concentration data and on proper density factors experimentally determined for Milan urban area, the mass concentrations were calculated in terms of particulate matter with aerodynamic diameters < or =10 microm (PM10), < or =2.5 pm (PM2.5), and < or =1 microm (PM1). Besides directly measuring the personal exposure to PM throughout the route, the measurement campaigns pointed out small spatial and temporal variations of the concentration ranges in the different urban microenvironments visited along the route as well as very peculiar features of the particles levels in the underground subway. These findings suggested that the personal exposure of pedestrians in the city center could be estimated by simply taking into account the exposure at the open air and in the subway. The comparison between measured and calculated exposures according to the microenvironment-based estimation results in reasonable accordance, even though the estimations tend to slightly underestimate (12%) the actual measured exposure.  相似文献   
237.
The purpose of the present work is to asses the possibility of detecting changes in soil organic carbon (SOC) at the end of the 5-years of the first Commitment Period (CP) of the Kyoto Protocol of the United Nation’s Framework Convention on Climate Change (1 January, 2008–31 December, 2012), by both direct measurement and the use of an opportunely evaluated SOC model, CENTURY. The investigated soil is young, developed since 28 years on virtually C-free spoil banks and under the influence of two managed forest stands, one a mix of English oak (Quercus robur L.) and Italian alder (Alnus cordata Loisel.) and the other pure English oak. The SOC stock of either stand was monitored since the time the stands were planted in 1981, and it was used together with other parameters for the model evaluation, while the future projections for the end of the first (2012) and second (2017) CP were made according to two extreme IPCC climatic scenarios: A1F1, the most dramatic, and B2, among the less impacting. Direct SOC measurements performed at the beginning and at the end of a time frame equivalent to a commitment period (2004–2008) had not shown significant variations in either stands. Compared to the 2008 SOC stock, in both stands the model shows variations at the end of the first CP from 0.7 to 1.8 Mg C ha−1 for the A1F1 scenario and from 0.3 to 1.7 Mg C ha−1 for the B2. These variations are within the standard deviations of the C stocks measured in 2008. On the contrary, at the end of the second CP, the modelled SOC increments range from 2.5 to 3.6 Mg C ha−1 (A1F1) or from 1.9 to 3.4 Mg C ha−1 (B2), indicating the possibility to detect the SOC changes by direct measurement, since the values well agree with the minimum detectable variation estimated for both sites in 3.3–4.5 Mg C ha−1. This work shows that SOC stock changes measured directly in the field can be minimal at the end of both CPs, and that CENTURY well simulates the SOC dynamics of the stands. The use of such a model, validated at long-term experimental sites, hence represents an effective tool for estimating future changes in SOC amounts in support of direct measurements when a short period of time, such as the CP, is considered.  相似文献   
238.

Background, aim, and scope  

Biowaste contains compounds of agricultural value such as organic carbon, nutrients, and trace elements and can partially replace mineral fertilizer (MIN) and improve the physical properties of the soil. However, the obvious benefits of land spreading need to be carefully evaluated against potential adverse effects on the environment and human health. Environmental contamination resulting from biowaste application is one of the key variables when assessing cost/benefits. This study provides data on the resulting concentration of polychlorinated dibenzodioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in the soil column as a result of the different types of fertilizers.  相似文献   
239.
● Application of the MOF-composite membranes in adsorption was discussed. ● Recent application of MOFs-membranes for separation was summarized. ● Separation and degradation for emerging organic contaminants were described. Presence of emerging organic contaminants (EOCs) in water is one of the major threats to water safety. In recent decades, an increasing number of studies have investigated new approaches for their effective removal. Among them, metal-organic frameworks (MOFs) have attracted increasing attention since their first development thanks to their tunable metal nodes and versatile, functional linkers. However, whether or not MOFs have a promising future for practical application in emerging contaminants-containing wastewater is debatable. This review summarizes recent studies about the removal of EOCs using MOFs-related material. The synthesis strategies of both MOF particles and composites, including thin-film nanocomposite and mixed matrix membranes, are critically reviewed, as well as various characterization technologies. The application of the MOF-based composite membranes in adsorption, separation (nanofiltration and ultrafiltration), and catalytic degradation are discussed. Overall, literature survey shows that MOFs-based composite could play a crucial role in eliminating EOCs in the future. In particular, modified membranes that realize separation and degradation might be the most promising materials for such application.  相似文献   
240.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号