首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   518篇
  免费   3篇
  国内免费   7篇
安全科学   20篇
废物处理   30篇
环保管理   67篇
综合类   49篇
基础理论   82篇
环境理论   1篇
污染及防治   175篇
评价与监测   77篇
社会与环境   25篇
灾害及防治   2篇
  2023年   9篇
  2022年   36篇
  2021年   22篇
  2020年   6篇
  2019年   8篇
  2018年   12篇
  2017年   13篇
  2016年   12篇
  2015年   9篇
  2014年   28篇
  2013年   67篇
  2012年   32篇
  2011年   29篇
  2010年   21篇
  2009年   15篇
  2008年   25篇
  2007年   25篇
  2006年   20篇
  2005年   25篇
  2004年   15篇
  2003年   12篇
  2002年   9篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1994年   3篇
  1992年   2篇
  1988年   2篇
  1987年   2篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1972年   2篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
  1964年   3篇
  1963年   1篇
  1962年   2篇
  1959年   2篇
  1958年   1篇
  1956年   3篇
  1955年   3篇
排序方式: 共有528条查询结果,搜索用时 343 毫秒
431.
Regular exercise improves physiological processes and yields positive health outcomes. However, it is relatively less known that particulate matter (PM) exposure during outdoor exercises may increase several respiratory health problems depending on PM levels. In this study, the respiratory deposition doses (RDDs) in head airway (HD), tracheobronchial (TB), and alveolar (AL) regions of various PM size fractions (<10, <2.5, and <1 μm; PM10, PM2.5, and PM1) were estimated in healthy male and female exercisers in urban outdoors and within house premises. The highest RDDs were found for PM during morning hours in winter compared with remaining periods. RDDs in AL region for males and females, respectively, were 34.7 × 10?2 and 28.8 × 10?2 µg min?1 for PM10, 65.7 × 10?2 and 56.9 × 10?2 µg min?1 for PM2.5, and 76.5 × 10?2 and 66.3 × 10?2 µg min?1 for PM1. The RDD values in AL region were significantly higher in PM1 (27%) compared with PM2.5 (13%) and PM10 (2%) during exercise in all periods. This result showed that the morning peak hours in winter are more harmful to urban outdoor exercisers compared with other periods. This study also showed that the AL region would have been the main affected zone through fine particle (PM1) to all the exercisers.

Implications: Size-segregated particle concentrations in urban outdoors and within house premises were measured. The highest respiratory deposition doses (RDDs) were found for PM during morning hours in winter compared with remaining periods. During light exercise, the RDD values in alveolar (AL) region for PM10, PM2.5, and PM1 for male exercisers were significantly higher, 20.4%, 15.5%, and 15.4%, respectively, compared with female exercisers during morning peak hours in winter.  相似文献   
432.
Forest cover is viewed as a resource for the nation as it provides ecosystem services. However, it becomes a burden and retards development for the people of the area, particularly the hills, where such forests flourish. Enactment of stringent laws over the past few decades has strictly prohibited tree felling in these areas, and it has become a deterrent in their growth process. While on one hand, the plains are abuzz with economic activity, on the other hand, the sparse population of the hills is compelled to bear the responsibility of maintaining ecological balance. In this context, the issue of development along with forest sustainability becomes important. Using the case study of the hills of Uttarakhand, India, the paper attempts to highlight the problems and the possible strategies that may be adopted to facilitate inclusive socioeconomic development of forest dwellers while ensuring conservation and enhancement of forest cover.  相似文献   
433.
Biological treatment of high-strength nitrogenous wastewater is challenging due to low growth rate of autotrophic nitrifiers. This study reports bioaugmentation of Thiosphaera pantotropha capable of simultaneously performing heterotrophic nitrification and aerobic denitrification (SND) in sequencing batch reactors (SBRs). SBRs fed with 1:1 organic-nitrogen (N) and NH4 +-N were started up with activated sludge and T. pantotropha by gradual increase in N concentration. Sludge bulking problems initially observed could be overcome through improved aeration and mixing and change in carbon source. N removal decreased with increase in initial nitrogen concentration, and only 50–60 % removal could be achieved at the highest N concentration of 1000 mg L?1 at 12-h cycle time. SND accounted for 28 % nitrogen loss. Reducing the settling time to 5–10 min and addition of divalent metal ions gradually improved the settling characteristics of sludge. Sludge aggregates of 0.05–0.2 mm diameter, much smaller than typical aerobic granules, were formed and progressive increase in settling velocity, specific gravity, Ca2+, Mg2+, protein, and polysaccharides was observed over time. Granulation facilitated total nitrogen (TN) removal at a constant rate over the entire 12-h cycle and thus increased TN removal up to 70 %. Concentrations of NO2 ?-N and NO3 ?-N were consistently low indicating effective denitrification. Nitrogen removal was possibly limited by urea hydrolysis/nitrification. Presence of T. pantotropha in the SBRs was confirmed through biochemical tests and 16S rDNA analysis.  相似文献   
434.
We assessed the association between arsenic intake through water and diet, and arsenic levels in first morning-void urine under variable conditions of water contamination. This was done in a 2-year consecutive study in an endemic population. Exposure of arsenic through water and diet was assessed for participants using arsenic-contaminated water (≥50 μg L?1) in a first year (group I) and for participants using water lower in arsenic (<50 μg L?1) in the next year (group II). Participants with and without arsenical skin lesions were considered in the statistical analysis. Median dose of arsenic intake through drinking water in groups I and II males was 7.44 and 0.85 μg kg body wt.?1 day?1 (p <0.0001). In females, it was 5.3 and 0.63 μg kg body wt.?1 day?1 (p <0.0001) for groups I and II, respectively. Arsenic dose through diet was 3.3 and 2.6 μg kg body wt.?1 day?1 (p?=?0.088) in males and 2.6 and 1.9 μg kg body wt.?1 day?1 (p?=?0.0081) in females. Median arsenic levels in urine of groups I and II males were 124 and 61 μg L?1 (p?=?0.052) and in females 130 and 52 μg L?1 (p?=?0.0001), respectively. When arsenic levels in the water were reduced to below 50 μg L?1 (Indian permissible limit), total arsenic intake and arsenic intake through the water significantly decreased, but arsenic uptake through the diet was found to be not significantly affected. Moreover, it was found that drinking water mainly contributed to variations in urine arsenic concentrations. However, differences between male and female participants also indicate that not only arsenic uptake, but also many physiological factors affect arsenic behavior in the body and its excretion. As total median arsenic exposure still often exceeded 3.0 μg kg body wt.?1 day?1 (the permissible lower limit established by the Joint Expert Committee on Food Additives) after installation of the drinking water filters, it can be concluded that supplying the filtered water only may not be sufficient to minimize arsenic availability for an already endemic population.  相似文献   
435.
Although the effect of volatile organic compounds (VOCs) on the oxidation of dissolved sulfur dioxide by oxygen has been the subject of many investigations, this is the first study which examines the effect of a large number of precisely 16 hydroxy compounds. The kinetics both in the absence and the presence of VOCs was defined by rate laws (A and B): A $$ \hbox{-} \mathrm{d}\left[\mathrm{S}\left(\mathrm{IV}\right)\right]/\mathrm{dt}={R}_o={k}_o\left[\mathrm{S}\left(\mathrm{IV}\right)\right] $$ B $$ \hbox{-} \mathrm{d}\left[\mathrm{S}\left(\mathrm{IV}\right)\right]/\mathrm{dt}={R}_i={k}_i\left[\mathrm{S}\left(\mathrm{IV}\right)\right] $$ where R o and k o are the initial rate and first-order rate constant, respectively, in the absence of VOCs, R i , and k i are the initial rate and the first-order rate constant, respectively, in the presence of VOCs, and [S(IV)] is the concentration of dissolved sulfur dioxide, sulfur(IV). The nature of the dependence of k i on the concentration of inhibitor, [Inh], was defined by Eq. (C). C $$ {k}_i={k}_0/\left(1+B\left[\mathrm{Inh}\right]\right) $$ where B is an empirical inhibition parameter. The values of B have been determined from the plots of 1/k i versus [Inh]. Among aliphatic and aromatic hydroxy compounds studied, t-butyl alcohol and pinacol were without any inhibition effect due to the absence of secondary or tertiary hydrogen. The values of inhibition parameter, B, were related to k inh , the rate constant for the reaction of SO4 ? radical with the inhibitor, by Eq. (D). D $$ B=\left(9\pm 2\right)\times 1{0}^{-4}\times {k}_{inh} $$ Equation (D) may be used to calculate the values of either of B or k inh provided that the other is known. The extent of inhibition depends on the value of the composite term, B[Inh]. However, in accordance with Eq. (C), the extent of inhibition would be sizeable and measurable when B[Inh]?>?0.1 and oxidation of S(IV) would be almost completely stopped when B[Inh]?≥?10. B[Inh] value can be used as a guide whether the reaction step: SO4 ??+?organics? \( \overset{k_{inh}}{\to } \) ?SO4 2??+?non-chain products: should be included in the multiphase models or not.  相似文献   
436.
There is a growing concern that persistent organic pollutants like organochlorine pesticides (OCPs) can impair fetal growth and affect birth size. However, currently available epidemiological evidence is inconclusive. In this case-control study, we examined the association between exposure to hexachlorocyclohexane (HCH) and its isomers (α-HCH, β-HCH and γ-HCH), dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE) and birth size. We recruited 60 infant-mother pairs, comprising of 30 term, small for gestational age babies with their mothers (Case group), and another 30 term, appropriate for gestational age babies with their mothers (Control group). This study was conducted in a tertiary hospital in Delhi, India, between March, 2009 and February 2010. Organochlorine pesticides were estimated in maternal blood, cord blood, placenta and breastmilk samples, using gas–liquid chromatography. Transplacental and transmammary transfer of OCPs was assessed by correlating the maternal blood OCP levels with those in cord blood and breastmilk by simple linear regression. The birthweight, crown heel length, head circumference, mid-arm circumference and ponderal index of the neonates was correlated with OCP levels in the maternal blood, cord blood, placenta and breastmilk. The OCP estimates were compared between samples of the case and control group. There was a significant (P < 0.001) transplacental transfer of all OCPs, however the transmammary transfer was insignificant for most OCPs except α-HCH. The OCP levels in the case group were higher than the control group; these were significantly more for t-HCH in cord blood and breastmilk; β-HCH in maternal blood, cord blood and breastmilk; DDE in placenta and DDT in breastmilk. There was a significant negative correlation between birthweight and t-HCH levels in maternal blood (P = 0.022), cord blood (P < 0.001), placenta (P = 0.008) and breastmilk (P = 0.005); β-HCH in cord blood (P < 0.001) and placenta (P = 0.020); γ-HCH in placenta (P = 0.045); and DDT (P = 0.009). Length at birth had a significant negative correlation with t-HCH in cord blood (P = 0.014) and breastmilk (P < 0.001); β-HCH in cord blood (P = 0.016) and breastmilk (P = 0.012); DDE in placenta (P = 0.016); and DDT in breastmilk (P = 0.006). Similarly, OCP levels were also found to be negatively correlated with head circumference, ponderal index and chest circumference in neonates. We conclude that prenatal exposure to some OCPs could impair the anthropometric development of the fetus, reducing the birthweight, length, head circumference, chest circumference and ponderal index.  相似文献   
437.

Introduction

A biosorbent was developed by simple dried Agaricus bisporus (SDAB) and effectively used for the biosorption of cationic dyes, Crystal Violet and Brilliant Green.

Materials and methods

For the evaluation of the biosorbent system, all the batch equilibrium parameters like pH, biomass dose, contact time, and temperature were optimized to determine the decolorization efficiency of the biosorbent. The maximum yields of dye removal were achieved at pH 4.0 for Crystal Violet (CV) and pH 5.0 for Brilliant Green (BG), which are closer to their natural pH also.

Result and discussion

Equilibrium was established at 60 and 40 min for CV and BG, respectively. Pseudo first-order, pseudo second-order, and intraparticle-diffusion kinetic models were studied at different temperatures. Isotherm models such as Freundlich, Langmuir, and Dubinin–Radushkevich were also studied. Biosorption processes were successfully described by Langmuir isotherm model and the pseudo second-order kinetic model.

Conclusions

The biosorption capacity of A. bisporus over CV and BG were found as 21.74 and 12.16 mg gm?1. Thermodynamic parameters indicated that the CV and BG dye adsorption onto A. bisporus is spontaneous and exothermic in the single and ternary systems. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were used for the surface morphology, crystalline structure of biosorbent, and dye–biosorbent interaction, respectively. This analysis of the biosorption data confirmed that these biosorption processes are ecofriendly and economical. Thus, this biomass system may be useful for the removal of contaminating cationic dyes.  相似文献   
438.
The utilization of sustainable and biodegradable lignocellulosic fiber to detoxify the noxious Cr(VI) from wastewater is considered a versatile approach to clean up a contaminated aquatic environment. The aim of the present research is to assess the proficiency and mechanism of biosorption on Ficus carica bast fiber via isotherm models (Langmuir, Freundlich, Temkin, Harkin’s–Jura, and Dubinin–Radushkevich), kinetic models, and thermodynamic parameters. The biomass extracted from fig plant was characterized by scanning electron microscopy and Fourier-transform infrared spectroscopy. To optimize the maximum removal efficiency, different parameters like effect of initial concentration, effect of temperature, pH, and contact time were studied by batch method. The equilibrium data were best represented by the Langmuir isotherm model, and the maximum adsorption capacity of Cr(VI) onto biosorbent was found to be 19.68 mg/g. The pseudo-second-order kinetic model adequately described the kinetic data. The calculated values of thermodynamic parameters such as enthalpy change (?H 0), entropy change (?S 0), and free energy change (?G 0) were 21.55 kJ/mol, 76.24 J/mol?K, and ?1.55 kJ/mol, respectively, at 30 °C which accounted for spontaneous and endothermic processes. The study of adsorbent capacity for Cr(VI) removal in the presence of Na+, Mg2+, Ca2+, SO 4 2? , HCO 3 ? and Cl? illustrated that the removal of Cr(VI) increased in the presence of HCO3? ions; the presence of Na+, SO 4 2? or Cl? showed no significant influence on Cr(VI) adsorption, while Ca2+ and Mg2+ ions led to an insignificant decrease in Cr(VI) adsorption. Further, the desorption studies illustrated that 31.10 % of metal ions can be removed from an aqueous system, out of which 26.63 % of metal ions can be recovered by desorption in first cycle and the adsorbent can be reused. The results of the scale-up study show that the ecofriendly detoxification of Cr(VI) from aqueous systems was technologically feasible.  相似文献   
439.
Lead tolerance in plants: strategies for phytoremediation   总被引:2,自引:0,他引:2  
Lead (Pb) is naturally occurring element whose distribution in the environment occurs because of its extensive use in paints, petrol, explosives, sludge, and industrial wastes. In plants, Pb uptake and translocation occurs, causing toxic effects resulting in decrease of biomass production. Commonly plants may prevent the toxic effect of heavy metals by induction of various celular mechanisms such as adsorption to the cell wall, compartmentation in vacuoles, enhancement of the active efflux, or induction of higher levels of metal chelates like a protein complex (metallothioneins and phytochelatins), organic (citrates), and inorganic (sulphides) complexes. Phyotochelains (PC) are synthesized from glutathione (GSH) and such synthesis is due to transpeptidation of γ-glutamyl cysteinyl dipeptides from GSH by the action of a constitutively present enzyme, PC synthase. Phytochelatin binds to Pb ions leading to sequestration of Pb ions in plants and thus serves as an important component of the detoxification mechanism in plants. At cellular level, Pb induces accumulation of reactive oxygen species (ROS), as a result of imbalanced ROS production and ROS scavenging processes by imposing oxidative stress. ROS include superoxide radical (O2 .?), hydrogen peroxide (H2O2) and hydroxyl radical (·OH), which are necessary for the correct functioning of plants; however, in excess they caused damage to biomolecules, such as membrane lipids, proteins, and nucleic acids among others. To limit the detrimental impact of Pb, efficient strategies like phytoremediation are required. In this review, it will discuss recent advancement and potential application of plants for lead removal from the environment.  相似文献   
440.
Present work demonstrates Cr (VI) detoxification and resistance mechanism of a newly isolated strain (B9) of Acinetobacter sp. Bioremediation potential of the strain B9 is shown by simultaneous removal of major heavy metals including chromium from heavy-metals-rich metal finishing industrial wastewater. Strain B9 tolerate up to 350 mg L?1 of Cr (VI) and also shows level of tolerance to Ni (II), Zn (II), Pb (II), and Cd (II). The strain was capable of reducing 67 % of initial 7.0 mg L?1 of Cr (VI) within 24 h of incubation, while in presence of Cu ions 100 % removal of initial 7.0 and 10 mg L?1 of Cr (VI) was observed with in 24 h. pH in the range of 6.0–8.0 and inoculum size of 2 % (v/v) were determined to be optimum for dichromate reduction. Fourier transform infrared spectroscopy and transmission electron microscopy studies suggested absorption or intracellular accumulation and that might be one of the major mechanisms behind the chromium resistance by strain B9. Scanning electron microscopy showed morphological changes in the strain due to chromium stress. Relevance of the strain for treatment of heavy-metals-rich industrial wastewater resulted in 93.7, 55.4, and 68.94 % removal of initial 30 mg L?1 Cr (VI), 246 mg L?1 total Cr, and 51 mg L?1 Ni, respectively, after 144 h of treatment in a batch mode.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号