全文获取类型
收费全文 | 17256篇 |
免费 | 142篇 |
国内免费 | 113篇 |
专业分类
安全科学 | 406篇 |
废物处理 | 652篇 |
环保管理 | 1904篇 |
综合类 | 5330篇 |
基础理论 | 3568篇 |
环境理论 | 2篇 |
污染及防治 | 4095篇 |
评价与监测 | 877篇 |
社会与环境 | 616篇 |
灾害及防治 | 61篇 |
出版年
2018年 | 200篇 |
2017年 | 188篇 |
2016年 | 285篇 |
2015年 | 216篇 |
2014年 | 317篇 |
2013年 | 1154篇 |
2012年 | 369篇 |
2011年 | 518篇 |
2010年 | 493篇 |
2009年 | 554篇 |
2008年 | 574篇 |
2007年 | 596篇 |
2006年 | 526篇 |
2005年 | 465篇 |
2004年 | 501篇 |
2003年 | 457篇 |
2002年 | 436篇 |
2001年 | 616篇 |
2000年 | 412篇 |
1999年 | 282篇 |
1998年 | 204篇 |
1997年 | 196篇 |
1996年 | 193篇 |
1995年 | 230篇 |
1994年 | 242篇 |
1993年 | 206篇 |
1992年 | 223篇 |
1991年 | 231篇 |
1990年 | 253篇 |
1989年 | 229篇 |
1988年 | 181篇 |
1987年 | 181篇 |
1986年 | 180篇 |
1985年 | 180篇 |
1984年 | 199篇 |
1983年 | 187篇 |
1982年 | 195篇 |
1981年 | 207篇 |
1980年 | 169篇 |
1979年 | 180篇 |
1978年 | 147篇 |
1977年 | 139篇 |
1974年 | 147篇 |
1973年 | 146篇 |
1968年 | 156篇 |
1967年 | 185篇 |
1966年 | 155篇 |
1965年 | 149篇 |
1964年 | 151篇 |
1963年 | 139篇 |
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
871.
Detecting Temporal Change in Watershed Nutrient Yields 总被引:1,自引:1,他引:1
Meta-analyses reveal that nutrient yields tend to be higher for watersheds dominated by anthropogenic uses (e.g., urban, agriculture) and lower for watersheds dominated by natural vegetation. One implication of this pattern is that loss of natural vegetation will produce increases in watershed nutrient yields. Yet, the same meta-analyses also reveal that, absent land-cover change, watershed nutrient yields vary from one year to the next due to many exogenous factors. The interacting effects of land cover and exogenous factors suggest nutrient yields should be treated as distributions, and the effect of land-cover change should be examined by looking for significant changes in the distributions. We compiled nutrient yield distributions from published data. The published data included watersheds with homogeneous land cover that typically reported two or more years of annual nutrient yields for the same watershed. These data were used to construct statistical models, and the models were used to estimate changes in the nutrient yield distributions as a result of land-cover change. Land-cover changes were derived from the National Land Cover Database (NLCD). Total nitrogen (TN) yield distributions increased significantly for 35 of 1550 watersheds and decreased significantly for 51. Total phosphorus (TP) yield distributions increased significantly for 142 watersheds and decreased significantly for 17. The amount of land-cover change required to produce significant shifts in nutrient yield distributions was not constant. Small land-cover changes led to significant shifts in nutrient yield distributions when watersheds were dominated by natural vegetation, whereas much larger land-cover changes were needed to produce significant shifts when watersheds were dominated by urban or agriculture. We discuss our results in the context of the Clean Water Act. 相似文献
872.
Many lakes have experienced a transition from a clear into a turbid state without macrophyte growth due to eutrophication.
There are several measures by which nitrogen (N) and phosphorus (P) concentrations in the surface water can be reduced. We
used the shallow lake model PCLake to evaluate the effects of three measures (reducing external nutrient loading, increasing
relative marsh area, and increasing exchange rate between open water and marsh) on water quality improvement. Furthermore,
the contribution of different retention processes was calculated. Settling and burial contributed more to nutrient retention
than denitrification. The model runs for a typical shallow lake in The Netherlands showed that after increasing relative marsh
area to 50%, total phosphorous (TP) concentration in the surface water was lower than the Maximum Admissible Risk (MAR, a
Dutch government water quality standard) level, in contrast to total nitrogen (TN) concentration. The MAR levels could also
be achieved by reducing N and P load. However, reduction of nutrient concentrations to MAR levels did not result in a clear
lake state with submerged vegetation. Only a combination of a more drastic reduction of the present nutrient loading, in combination
with a relatively large marsh cover (approximately 50%) would lead to such a clear state. We therefore concluded that littoral
marsh areas can make a small but significant contribution to lake recovery. 相似文献
873.
de Boer HC 《Journal of environmental quality》2008,37(5):1968-1973
Co-digestion changes slurry characteristics and is supposed to increase short-term nitrogen (N) uptake by crops after application. A higher N uptake from slurry reduces the need for additional mineral N fertilizer. If farmers apply co-digested slurry (CS), a higher N recovery has to be taken into account to prevent losses to the environment. Since data on the effects of co-digestion on N recovery by crops are scarce, a pot experiment was performed. The apparent N recovery (ANR) of five different co-digested pig slurries was compared with their raw source slurries (RS) during 105 d after a single fertilization of ryegrass (Lolium perenne L.), grown under controlled conditions. Slurry was mixed with sandy soil and grass was cut every 35 d. The results show that co-digestion increased (p < 0.05) the ANR at first cut on average from 39 to 50%, at second cut from 7 to 9% (p < 0.05), and had no effect on ANR at third cut (3%). The ANR increase at first cut was likely due to an increase of the NH(4)-N/total N ratio along with a decrease of the organic C/total N ratio of slurry during co-digestion. Field application may under certain circumstances decrease N fertilizer value of CS, due to a higher NH(3) emission compared to RS. A potential ANR increase may then be reduced, absent, or even become a decrease. Under comparable NH(3) emissions, however, CS can in the short term be more valuable as an N fertilizer than RS, and fertilizer savings can likely be realized. 相似文献
874.
Increased attention to ground water contamination has encouraged an interest in mechanisms of solute transport through soils. Few studies have investigated the effect of the initial soil water content on the transport and degradation of herbicides for claypan soils. We investigated the effect of claypan soils at initial field capacity vs. permanent wilting level on atrazine and alachlor transport. The soil studied was Mexico silt loam (fine, smectitic, mesic Aeric Vertic Epiaqualf) with a subsoil clay content, primarily montmorillonite, of >40%. Strontium bromide, atrazine, and alachlor were applied to plots; half were at field capacity (Wet treatment), and half were near the permanent wilting point (Dry treatment). Soil cores were removed at selected depths and times, and cores were analyzed for bromide and herbicide concentrations. Bromide, atrazine, and alachlor were detected at the 0.90-m depth in dry plots within 15 d after experiment initiation. Bromide was detected 0.15 m deeper (P < 0.05) in the Dry compared with the Wet treatment at 1, 7, and 60 d after application and >0.30 m deeper (P < 0.01) in the Dry treatment at 15 and 30 d after application; similar treatment results were found for atrazine and alachlor, although on fewer dates with significant differences. The mobility order of the applied chemicals was bromide > atrazine > alachlor. The atrazine apparent half-life was significantly longer in the Dry plots compared with the Wet plots. The retardation factor determined from the relative velocity of each herbicide to that of bromide was higher for alachlor than for atrazine. This study identifies the impact that shrinkage cracks have for different moisture conditions on preferential transport of herbicides in claypan soils. 相似文献
875.
Schiavon M Pilon-Smits EA Wirtz M Hell R Malagoli M 《Journal of environmental quality》2008,37(4):1536-1545
The effects of chromate on sulfate uptake and assimilation were investigated in the accumulator Brassica juncea (L.) Czern. Seven-day-old plants were grown for 2 d under the following combination of sulfate and chromate concentration: (i) no sulfate and no chromate (-S), (ii) no sulfate and 0.2 mmol L(-1) chromate (-S +Cr), (iii) 1 mmol L(-1) sulfate and no chromate (+S), or (iv) 1 mmol L(-1) sulfate and 0.2 mmol L(-1) chromate (+S +Cr). Despite the toxic effects exerted by chromate as indicated by altered level of reducing sugars and proteins in leaves, the growth of B. juncea was only weakly reduced by chromate, and no variation in chlorophyll a and b was measured, regardless of S availability. Chromium (Cr) was stored more in roots than in leaves, and the maximum Cr accumulation was measured in -S +Cr plants. The significant decrease of the sulfate uptake rates observed in Cr-treated plants was accompanied by a repression of the root low-affinity sulfate transporter (BjST1), suggesting that the transport of chromate in B. juncea may involve sulfate carriers. Once absorbed, chromate induced genes involved in sulfate assimilation (ATP-sulfurylase: atps6; APS-reductase: apsr2; Glutathione synthethase: gsh2) and accumulation of cysteine and glutathione, which may suggest that these reduced S compounds play a role in Cr tolerance. Together, our findings indicate that when phytoremediation technologies are used to recover Cr-contaminated areas, the concentration of sulfate in the plant growth medium must be considered because it may influence the ability of plants to accumulate and tolerate Cr. 相似文献
876.
Sanders SM Srivastava P Feng Y Dane JH Basile J Barnett MO 《Journal of environmental quality》2008,37(4):1510-1518
Currently, limited research on the fate of antimicrobials in the environment exists, once they are discharged in human and animal wastes. Sorption of two antimicrobials, sulfadimethoxine (SDM) and ormetoprim (OMP), was investigated in two soils and sand using a series of batch experiments. Because OMP and SDM are often administered in combination, their sorption was also investigated in combination as co-solutes. The rate of SDM and OMP sorption was rapid over the first few hours of the experiments, which then slowed considerably after 16 to 68 h. OMP sorption was enhanced at high concentrations when in combination with SDM, with linear sorption coefficients ranging from 1.3 to 58.3 L.kg(-1) in the single solute experiments and 4.96 to 89.7 L.kg(-1) in the co-solute experiments. Sorption of OMP as a single solute seems to provide a better fit with the Freundlich equation, which became more linear (n approached 1) when SDM was present. Overall, SDM sorbed less than OMP in the two soils and sand. SDM linear sorption coefficients ranged from 0.4 to 25.8 L.kg(-1) as a single solute and 2.5 to 22.1 L.kg(-1) as a co-solute. Sorption of SDM becomes more nonlinear (n < 1) when SDM is present in combination with OMP. Overall, sorption of both antimicrobials increased in the selected soils and sand as the organic matter, clay content, and cation exchange capacity increased. These experiments indicate relatively low sorption of SDM and OMP in natural soils, making them a potential threat to surface and ground water. 相似文献
877.
Duff JH Tesoriero AJ Richardson WB Strauss EA Munn MD 《Journal of environmental quality》2008,37(3):1133-1144
Physical, chemical, hydrologic, and biologic factors affecting nitrate (NO3(-)) removal were evaluated in three agricultural streams draining orchard/dairy and row crop settings. Using 3-d "snapshots" during biotically active periods, we estimated reach-level NO3(-) sources, NO3(-) mass balance, in-stream processing (nitrification, denitrification, and NO3(-) uptake), and NO3(-) retention potential associated with surface water transport and ground water discharge. Ground water contributed 5 to 11% to stream discharge along the study reaches and 8 to 42% of gross NO3(-) input. Streambed processes potentially reduced 45 to 75% of ground water NO3(-) before discharge to surface water. In all streams, transient storage was of little importance for surface water NO3(-) retention. Estimated nitrification (1.6-4.4 mg N m(-2) h(-1)) and unamended denitrification rates (2.0-16.3 mg N m(-2) h(-1)) in sediment slurries were high relative to pristine streams. Denitrification of NO3(-) was largely independent of nitrification because both stream and ground water were sources of NO3(-). Unamended denitrification rates extrapolated to the reach-scale accounted for <5% of NO3(-) exported from the reaches minimally reducing downstream loads. Nitrate retention as a percentage of gross NO3(-) inputs was >30% in an organic-poor, autotrophic stream with the lowest denitrification potentials and highest benthic chlorophyll a, photosynthesis/respiration ratio, pH, dissolved oxygen, and diurnal NO3(-) variation. Biotic processing potentially removed 75% of ground water NO3(-) at this site, suggesting an important role for photosynthetic assimilation of ground water NO3(-) relative to subsurface denitrification as water passed directly through benthic diatom beds. 相似文献
878.
Water movement within the unsaturated zone in four agricultural areas of the United States 总被引:2,自引:0,他引:2
Millions of tons of agricultural fertilizer and pesticides are applied annually in the USA. Due to the potential for these chemicals to migrate to groundwater, a study was conducted in 2004 using field data to calculate water budgets, rates of groundwater recharge and times of water travel through the unsaturated zone and to identify factors that influence these phenomena. Precipitation was the only water input at sites in Indiana and Maryland; irrigation accounted for about 80% of total water input at sites in California and Washington. Recharge at the Indiana site (47.5 cm) and at the Maryland site (31.5 cm) were equivalent to 51 and 32%, respectively, of annual precipitation and occurred between growing seasons. Recharge at the California site (42.3 cm) and Washington site (11.9 cm) occurred in response to irrigation events and was about 29 and 13% of total water input, respectively. Average residence time of water in the unsaturated zone, calculated using a piston-flow approach, ranged from less than 1 yr at the Indiana site to more than 8 yr at the Washington site. Results of bromide tracer tests indicate that at three of the four sites, a fraction of the water applied at land surface may have traveled to the water table in less than 1 yr. The timing and intensity of precipitation and irrigation were the dominant factors controlling recharge, suggesting that the time of the year at which chemicals are applied may be important for chemical transport through the unsaturated zone. 相似文献
879.
Emissions of carbon monoxide (CO) were observed from decomposing organic wastes and litter under laboratory, pilot composting plant, and natural conditions. Field studies included air from inside a compost heap of about 200 m3, emissions from composting of livestock wastes at a biologically operating farm, and leaf litter pile air samples. The concentration of CO was up to 120 micromol mol(-1) in the compost piles of green waste, and up to 10 micromol mol(-1) in flux chambers above livestock waste windrow composts. The mean CO flux rates were approximately 20 mg CO m(-2) h(-1) for compost heaps of green waste, and varied from 30 to 100 mg CO m(-2) h(-1) for fresh dung windrows. Laboratory studies using a temperature and ventilation-controlled substrate container were performed to elucidate the origin of CO, and included hay samples of fixed moisture content at temperatures between 5 and 65 degrees C, including nonsterilized as well as sterilized samples. The concentration of CO was up to 160 micromol mol(-1) in these experiments, and Arrhenius-type plot analyses resulted in activation energies of 65 kJ mol(-1) for thermochemically produced CO from the nonsterilized compost substrate. Sterilized samples showed dramatically reduced CO2 but virtually unchanged CO emissions, albeit at a slightly lower activation energy, likely a result of the high-temperature sterilization. Though globally and regionally these CO emissions are only a minor source, thermochemically produced CO emissions might affect local air quality in and near composting facilities. 相似文献
880.
Restored prairies are expected to improve soil physical properties, yet little is known about the extent of change to soil properties and how rapidly these changes take place. The objective of this study was to compare effects of prairie restoration on computed tomography (CT)-measured pore parameters. Undisturbed soil cores (76 mm diam. by 76 mm long) from native prairie (NP), restored prairie (RP), conservation reserve program (CRP), and no-till corn (Zea mays L.)-soybean (Glycine max (L.) Merr.; CS) sites were collected with six replicates from the 0- to 40-cm depth in 10-cm increments. Five CT images were acquired from each soil core using a medical CT scanner with 0.2 by 0.2 mm pixel resolution with 0.5 mm slice thickness, and then images were analyzed. Soil bulk density and hydraulic conductivity (K(sat)) were also measured. Soils under NP, RP, CRP, and CS areas had 83, 43, 48, and 26 pores on a 2500 mm(2) area, respectively, for the 0- to 40-cm depth. The number of pores, number of macropores (>1000 microm diam.), macroporosity, mesoporosity (200-1000 microm diam.), and fractal dimension were significantly higher and pore circularity was lower for NP, RP, and CRP than the CS treatment. The CT-measured mesoporosity and macroporosity of the CS treatment were 20 and 18% of the values for the NP site. CT-measured number of pores and macropores explained 43 and 40% of the variation for K(sat). The study showed that prairie restoration improves CT-measured soil pore parameters and decreases bulk density which are related to soil water infiltration. 相似文献