Pyrolysis of waste materials to produce biochar is an excellent and suitable alternative supporting a circular bio-based economy. One of the properties attributed to biochar is the capacity for sorbing organic contaminants, which is determined by its composition and physicochemical characteristics. In this study, the capacity of waste-derived biochar to retain volatile fuel organic compounds (benzene, toluene, ethylbenzene and xylene (BTEX) and fuel oxygenates (FO)) from artificially contaminated water was assessed using batch-based sorption experiments. Additionally, the sorption isotherms were established. The results showed significant differences between BTEX and FO sorption on biochar, being the most hydrophobic and non-polar contaminants those showing the highest retention. Furthermore, the sorption process reflected a multilayer behaviour and a relatively high sorption capacity of the biochar materials. Langmuir and Freundlich models were adequate to describe the experimental results and to detect general differences in the sorption behaviour of volatile fuel organic compounds. It was also observed that the feedstock material and biochar pyrolysis conditions had a significant influence in the sorption process. The highest sorption capacity was found in biochars produced at high temperature (>?400 °C) and thus rich in aromatic C, such as eucalyptus and corn cob biochars. Overall, waste-derived biochar offers a viable alternative to be used in the remediation of volatile fuel organic compounds from water due to its high sorption capacity.
The recovery of energy from the combustion of municipal solid wastes is becoming an attractive alternative as landfill space becomes scarce and the availability of fossil fuels decreases. Particulate emissions from “waste-as-fuel” processes, however, may differ significantly in chemical and physical properties from particulate emissions produced by firing only coal. Such differences can affect the design and operation of air pollution control equipment. Presented in this paper are the results of a 2-month test program at Ames, Iowa, with a mobile electrostatic precipitator (ESP) and a mobile scrubber supplied by the U.S. Environmental Protection Agency (EPA), Industrial Environmental Research Laboratory (IERL), Research Triangle Park. PEDCo Environmental, Inc., and Acurex Corporation jointly conducted the test program to examine the effect of burning refuse-derived fuel (RDF) on particulate and heavy metal control efficiencies. The mobile ESP was used only as a primary control device, whereas the mobile scrubber was tested both upstream and downstream of the existing full-scale ESP. This paper also presents a status report on a PEDCo test program with a pilot fabric filter at Ames. 相似文献
Delivering access to sufficient food, energy and water resources to ensure human wellbeing is a major concern for governments worldwide. However, it is crucial to account for the ‘nexus’ of interactions between these natural resources and the consequent implications for human wellbeing. The private sector has a critical role in driving positive change towards more sustainable nexus management and could reap considerable benefits from collaboration with researchers to devise solutions to some of the foremost sustainability challenges of today. Yet opportunities are missed because the private sector is rarely involved in the formulation of deliverable research priorities. We convened senior research scientists and influential business leaders to collaboratively identify the top forty questions that, if answered, would best help companies understand and manage their food-energy-water-environment nexus dependencies and impacts. Codification of the top order nexus themes highlighted research priorities around development of pragmatic yet credible tools that allow businesses to incorporate nexus interactions into their decision-making; demonstration of the business case for more sustainable nexus management; identification of the most effective levers for behaviour change; and understanding incentives or circumstances that allow individuals and businesses to take a leadership stance. Greater investment in the complex but productive relations between the private sector and research community will create deeper and more meaningful collaboration and cooperation. 相似文献
Sustainability science is a solution-oriented discipline. Yet, there are few theory-rich discussions about how this orientation structures the efforts of sustainability science. We argue that Niklas Luhmann’s social system theory, which explains how societies communicate problems, conceptualize solutions, and identify pathways towards implementation of solutions, is valuable in explaining the general structure of sustainability science. From Luhmann, we focus on two key concepts. First, his notion of resonance offers us a way to account for how sustainability science has attended and responded to environmental risks. As a product of resonance, we reveal solution-oriented research as the strategic coordination of capacities, resources, and information. Second, Luhmann’s interests in self-organizing processes explain how sustainability science can simultaneously advance multiple innovations. The value logic that supports this multiplicity of self-organizing activities as a recognition that human and natural systems are complex coupled and mutually influencing. To give form to this theoretical framework, we offer case evidence of renewable energy policy formation in Texas. Although the state’s wealth is rooted in a fossil-fuel heritage, Texas generates more electricity from wind than any US state. It is politically antagonistic towards climate-change policy, yet the state’s reception of wind energy technology illustrates how social and environmental systems can be strategically aligned to generate solutions that address diverse needs simultaneously. This case demonstrates that isolating climate change—as politicians do as a separate and discrete problem—is incapable of achieving sustainable solutions, and resonance offers researchers a framework for conceptualizing, designing, and communicating meaningfully integrated actions. 相似文献
Environmental Science and Pollution Research - Despite significant investigation of fly ash spills and mineralogical controls on the release of potentially toxic elements (PTEs) from fly ash,... 相似文献
Nature-based solutions (NBS) find increasing attention as actions to address societal challenges through harnessing ecological processes, yet knowledge gaps exist regarding approaches to landscape planning with NBS. This paper aims to provide suggestions of how planning NBS can be conceptualized and applied in practice. We develop a framework for planning NBS by merging insights from literature and a case study in the Lahn river landscape, Germany. Our framework relates to three key criteria that define NBS, and consists of six steps of planning: Co-define setting, Understand challenges, Create visions and scenarios, Assess potential impacts, Develop solution strategies, and Realize and monitor. Its implementation is guided by five principles, namely Place-specificity, Evidence base, Integration, Equity, and Transdisciplinarity. Drawing on the empirical insights from the case study, we suggest suitable methods and a checklist of supportive procedures for applying the framework in practice. Taken together, our framework can facilitate planning NBS and provides further steps towards mainstreaming.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01365-1) contains supplementary material, which is available to authorized users. 相似文献
Environmental Science and Pollution Research - Methotrexate (MTX) and azathioprine (AZA) are chemotherapeutic, antimetabolic, and immunosuppressive agents with substantial risks such as oxidative... 相似文献
Summary. Broad mite, Polyphagotarsonemus latus (Acari:
Tarsonemidae) exhibits a specific phoretic relationship with
whiteflies. Under field conditions most broad mites, caught
in sticky traps, are attached to whiteflies. Under laboratory
conditions, attachment occurs equally well in the dark and
light. Mites do not differentiate between the sexes of their
phoretic host Bemisia tabaci. However, mite attachment to
B. tabaci is greatly diminished by washing the host with
various organic solvents, chloroform in particular. The
effect of whitefly waxy particles on broad mite behavior was
studied using wax from the whitefly Aleyrodes singularis
and from the mealybug Planococcus citri. Broad mites were
not only attracted specifically to the A. singularis waxy
particles-treated leaf areas but were also attached to leaf
trichomes in this area. The results of this study suggests the
importance of olfactory cues from the whitefly waxy particles
in the recognition process of the phoretic host and/or
the induction of the attachment behavior to whitefly legs or
leaf trichomes. 相似文献
The objective of this study was to assess the removal efficiencies of secondary wastewater treatment processes for compounds causing endocrine disrupting activity. The study used bioassays and chemical measurements, such as gas chromatography with mass spectrometry and enzyme immunosorbent assays. A total of seven full-scale water reclamation facilities using different unit operations and two pilot-scale membrane bioreactors were examined. Findings of this study imply that estrogenic disrupting activity in primary effluent is mainly caused by two steroidal hormones (17beta-estradiol and estriol) and, to a lesser extent, by synthetic chemicals, such as bisphenol A, 4-nonylphenol, and 4-tert-octylphenol. During secondary treatment, steroidal hormones were removed to a higher degree than nonylphenol and bisphenol A. The total estrogenic activity was removed by an average of 96%. The remaining concentrations of targeted steroids in secondary effluents, except for estriol, still had the potential to elicit a positive response in the human breast cell cancer assay. For the majority of facilities, the remaining activity was likely attributed to residual concentrations of two steroidal hormones (17beta-estradiol and estriol). 相似文献