Monitoring of body burden of toxic elements is usually based on analysis of concentration of particular elements in blood, urine and/or hair. Analysis of these matrices, however, predominantly reflects short- or medium-term exposure to trace elements or pollutants. In this work, urinary stones were investigated as a matrix for monitoring long-term exposure to toxic and essential elements. A total of 431 samples of urinary calculi were subjected to mineralogical and elemental analysis by infrared spectroscopy and inductively coupled plasma mass spectrometry. The effect of mineralogical composition of the stones and other parameters such as sex, age and geographical location on contents of trace and minor elements is presented. Our results demonstrate the applicability of such approach and confirm that the analysis of urinary calculi can be helpful in providing complementary information on human exposure to trace metals and their excretion. Analysis of whewellite stones (calcium oxalate monohydrate) with content of phosphorus <0.6 % has been proved to be a promising tool for biomonitoring of trace and minor elements.
The spatial and temporal variations of some trace metals in the surface sediments of Cochin Estuary were analyzed along with their geochemical associations to identify the possible sources, bioavailability and the health risks posed by them. The dominance of kaolinite and suggested that clay minerals distribution is influenced by sediment sorting. Total metal analysis revealed enrichment for Cd, Pb and Zn due to anthropogenic activities. The speciation analysis established that notwithstanding the large availability, carbonate as well as organic and sulfides bound fractions showed negligible associations with most of the metals. Hydrous Fe–Mn oxides appeared to play a major role in controlling the fate and transport of these metals in the sediments of Cochin Estuary. Lower contribution of the residual fractions for Cd (21%–26%), Pb (<60%) and Zn (24%–42%) indicated an obvious increase of other geochemical fractions. Risk assessment analysis revealed that regardless of total concentration, none of the analyzed metals were at safe levels in the estuary as appreciable percentages were found to be associated with mobile geochemical forms. The speciation study conspicuously established that the metals originating from non-geogenic sources are largely associated with the labile fractions and hence are more detrimental to the aquatic biota. 相似文献
Accurate trend estimates are necessary for understanding which species are declining and which are most in need of conservation action. Imperfect species detection may result in unreliable trend estimates because this may lead to the overestimation of declines. Because many management decisions are based on population trend estimates, such biases could have severe consequences for conservation policy. We used an occupancy‐modeling framework to estimate detectability and calculate nationwide population trends for 14 Swiss amphibian species both accounting for and ignoring imperfect detection. Through the application of International Union for Conservation of Nature Red List criteria to the different trend estimates, we assessed whether ignoring imperfect detection could affect conservation policy. Imperfect detection occurred for all species and detection varied substantially among species, which led to the overestimation of population declines when detectability was ignored. Consequently, accounting for imperfect detection lowered the red‐list risk category for 5 of the 14 species assessed. We demonstrate that failing to consider species detectability can have serious consequences for species management and that occupancy modeling provides a flexible framework to account for observation bias and improve assessments of conservation status. A problem inherent to most historical records is that they contain presence‐only data from which only relative declines can be estimated. A move toward the routine recording of nonobservation and absence data is essential if conservation practitioners are to move beyond this toward accurate population trend estimation. 相似文献
Environmental Science and Pollution Research - Animal breeding for meat production based on swine, cattle, poultry, and aquaculture is an activity that generates several impacts on the environment,... 相似文献
Following an intensive survey of domestic radon levels in the United Kingdom (UK), the former National Radiological Protection Board (NRPB), now the Radiation Protection Division of the Health Protection Agency (HPA-RPD), established a measurement protocol and promulgated Seasonal Correction Factors applicable to the country as a whole. Radon levels in the domestic built environment are assumed to vary systematically and repeatably during the year, being generally higher in winter. The Seasonal Correction Factors therefore comprise a series of numerical multipliers, which convert a 1-month or 3-month radon concentration measurement, commencing in any month of the year, to an effective annual mean radon concentration. In a recent project undertaken to assess the utility of short-term exposures in quantifying domestic radon levels, a comparative assessment of a number of integrating detector types was undertaken, with radon levels in 34 houses on common geology monitored over a 12-month period using dose-integrating track-etch detectors exposed in pairs (one upstairs, one downstairs) at 1-month and 3-month resolution. Seasonal variability of radon concentrations departed significantly from that expected on the basis of the HPA-RPD Seasonal Correction Factor set, with year-end discontinuities at both 1-month and 3-month measurement resolutions. Following this study, monitoring with electrets was continued in four properties, with weekly radon concentration data now available for a total duration in excess of three and a half years. Analysis of this data has permitted the derivation of reliable local Seasonal Correction Factors. Overall, these are significantly lower than those recommended by HPA-RPD, but are comparable with other results from the UK and from abroad, particularly those that recognise geological diversity and are consequently prepared on a regional rather than a national basis. This finding calls into question the validity of using nationally aggregated Seasonal Correction Factors, especially for shorter exposures, and the universal applicability of these corrections is discussed in detail. 相似文献
Environmental Science and Pollution Research - Acrylamide (AA), an industrial monomer, may cause multi-organ toxicity through induction of oxidative stress and inflammation. The antioxidant... 相似文献
Russian Journal of Ecology - Analysis of hunting samples of the Kamchatka sable population for 2001–2013 has revealed changes in the reproductive parameters of females over the period from... 相似文献
Unprecedented and dramatic transformations are occurring in the Arctic in response to climate change, but academic, public, and political discourse has disproportionately focussed on the most visible and direct aspects of change, including sea ice melt, permafrost thaw, the fate of charismatic megafauna, and the expansion of fisheries. Such narratives disregard the importance of less visible and indirect processes and, in particular, miss the substantive contribution of the shelf seafloor in regulating nutrients and sequestering carbon. Here, we summarise the biogeochemical functioning of the Arctic shelf seafloor before considering how climate change and regional adjustments to human activities may alter its biogeochemical and ecological dynamics, including ecosystem function, carbon burial, or nutrient recycling. We highlight the importance of the Arctic benthic system in mitigating climatic and anthropogenic change and, with a focus on the Barents Sea, offer some observations and our perspectives on future management and policy. 相似文献
Efficient removal of chlorine from PVC achieved by two-stage heat-treatment (280 and 410 degrees C) provided chlorine-free isotropic pitch containing additive. The pitch was stabilized and carbonized into porous carbons with surface areas of approximately 300 m2/g. Resultant porous carbons showed three pore structures of supermicropore, micropore and mesopore. The generation of CO2 from the decomposition of the CaCO3 additive in waste PVC is responsible for the development of porous structures. The surface area of the carbonized product increased after the removal of CaO. 相似文献