首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1144篇
  免费   8篇
  国内免费   5篇
安全科学   18篇
废物处理   45篇
环保管理   70篇
综合类   666篇
基础理论   138篇
污染及防治   168篇
评价与监测   32篇
社会与环境   18篇
灾害及防治   2篇
  2017年   14篇
  2015年   10篇
  2014年   10篇
  2013年   39篇
  2012年   33篇
  2011年   30篇
  2010年   22篇
  2009年   28篇
  2008年   23篇
  2007年   26篇
  2006年   29篇
  2005年   32篇
  2004年   37篇
  2003年   33篇
  2002年   26篇
  2001年   13篇
  2000年   9篇
  1998年   11篇
  1995年   14篇
  1994年   12篇
  1993年   9篇
  1989年   9篇
  1978年   10篇
  1966年   10篇
  1965年   15篇
  1964年   15篇
  1963年   25篇
  1962年   17篇
  1961年   14篇
  1960年   23篇
  1959年   24篇
  1958年   15篇
  1957年   16篇
  1956年   15篇
  1955年   27篇
  1954年   33篇
  1953年   19篇
  1952年   14篇
  1951年   24篇
  1948年   9篇
  1947年   11篇
  1941年   9篇
  1939年   9篇
  1938年   12篇
  1935年   8篇
  1933年   9篇
  1931年   11篇
  1930年   12篇
  1929年   13篇
  1921年   8篇
排序方式: 共有1157条查询结果,搜索用时 531 毫秒
451.
The reaction between hydrochloric acid and solid slaked lime was investigated by passing simulated flue gas through a fixed bed reactor. The influence of CO2 and H2O present in the flue gas was studied, as well as the influence of the reaction temperature in the range 423 to 673 K. The reaction was found to be of first order with respect to the two reactants. Expressions to account for the temperature and the CO2 and H2O concentrations were derived from the experimental data.  相似文献   
452.
453.
The concentration of six HMs (Cd, Cr, Co, Pb, Hg and Ni) was analysed in 321 organically grown winter and spring wheat genotypes from six genotype groups, i.e. selections, old landraces, primitive wheat, spelt, old cultivars and cultivars. Also the potential risk of individual toxic HM to human health was estimated by using the Hazard Quotient (HQ). Significantly the lowest grain concentration of Cd was found in primitive wheat as compared to all other investigated genotype groups. Intake of HM by consumption of whole wheat grain was not found to pose a health risk to human for any of the investigated genotype groups. The bio-concentration factor of Cd for the different genotype groups indicated a lower ability to accumulate Cd for primitive wheat as compared to other genotype groups. The primitive wheat was found the most promising and might be of interest in future wheat breeding programs to develop wheat genotypes with low HMs concentration in the grain.  相似文献   
454.
Winter climate and snow cover are the important drivers of plant community development in polar regions. However, the impacts of changing winter climate and associated changes in snow regime have received much less attention than changes during summer. Here, we synthesize the results from studies on the impacts of extreme winter weather events on polar heathland and lichen communities. Dwarf shrubs, mosses and soil arthropods were negatively impacted by extreme warming events while lichens showed variable responses to changes in extreme winter weather events. Snow mould formation underneath the snow may contribute to spatial heterogeneity in plant growth, arthropod communities and carbon cycling. Winter snow cover and depth will drive the reported impacts of winter climate change and add to spatial patterns in vegetation heterogeneity. The challenges ahead lie in obtaining better predictions on the snow patterns across the landscape and how these will be altered due to winter climate change.  相似文献   
455.
Anammox: an option for ammonium removal in bioreactor landfills   总被引:1,自引:0,他引:1  
Experiments carried out in bioreactor landfill simulators demonstrated that more than 40% of the total N was transferred into the liquid and gas phases during the incubation period of 380 days. Ammonium, an end product of protein degradation and important parameter to consider during landfill closure, tends to accumulate up to inhibitory levels in the leachate of landfills especially in landfills with leachate recirculation. Most efforts to remove ammonium from leachate have been focused on ex situ and partial in situ methods such as nitrification, denitrification and chemical precipitation. Besides minimal contributions from other N-removal processes, Anammox (Anaerobic Ammonium Oxidation) bacteria were found to be active within the simulators. Anammox is considered to be an important contributor to remove N from the solid matrix. However, it was unclear how the necessary nitrite for Anammox metabolism was produced. Moreover, little is known about the nature of residual nitrogen in the waste mass and possible mechanisms to remove it. Intrusion of small quantities of O2 is not only beneficial for the degradation process of municipal solid waste (MSW) in bioreactor landfills but also significant for the development of the Anammox bacteria that contributed to the removal of ammonium. Volatilisation and Anammox activity were the main N removal mechanisms in these pilot-scale simulators. The results of these experiments bring new insights on the behaviour, evolution and fate of nitrogen from solid waste and present the first evidence of the existence of Anammox activity in bioreactor landfill simulators.  相似文献   
456.
Steel slag can be applied as substitute for natural aggregates in construction applications. The material imposes a high pH (typically 12.5) and low redox potential (Eh), which may lead to environmental problems in specific application scenarios. The aim of this study is to investigate the potential of accelerated steel slag carbonation, at relatively low pCO2 pressure (0.2 bar), to improve the environmental pH and the leaching properties of steel slag, with specific focus on the leaching of vanadium. Carbonation experiments are performed in laboratory columns with steel slag under water-saturated and -unsaturated conditions and temperatures between 5 and 90 °C. Two types of steel slag are tested; free lime containing (K3) slag and K1 slag with a very low free lime content. The fresh and carbonated slag samples are investigated using a combination of leaching experiments, geochemical modelling of leaching mechanisms and microscopic/mineralogical analysis, in order to identify the major processes that control the slag pH and resulting V leaching. The major changes in the amount of sequestered CO2 and the resulting pH reduction occurred within 24 h, the free lime containing slag (K3-slag) being more prone to carbonation than the slag with lower free lime content (K1-slag). While carbonation at these conditions was found to occur predominantly at the surface of the slag grains, the formation of cracks was observed in carbonated K3 slag, suggesting that free lime in the interior of slag grains had also reacted. The pH of the K3 slag (originally pH ± 12.5) was reduced by about 1.5 units, while the K1 slag showed a smaller decrease in pH from about 11.7 to 11.1. However, the pH reduction after carbonation of the K3 slag was observed to lead to an increased V-leaching. Vanadium leaching from the K1 slag resulted in levels above the limit values of the Dutch Soil Quality Decree, for both the untreated and carbonated slag. V-leaching from the carbonated K3 slag remained below these limit values at the relatively high pH that remained after carbonation. The V-bearing di-Ca silicate (C2S) phase has been identified as the major source of the V-leaching. It is shown that the dissolution of this mineral is limited in fresh steel slag, but strongly enhanced by carbonation, which causes the observed enhanced release of V from the K3 slag. The obtained insights in the mineral transformation reactions and their effect on pH and V-leaching provide guidance for further improvement of an accelerated carbonation technology.  相似文献   
457.
The Anthropocene: From Global Change to Planetary Stewardship   总被引:3,自引:0,他引:3  
Over the past century, the total material wealth of humanity has been enhanced. However, in the twenty-first century, we face scarcity in critical resources, the degradation of ecosystem services, and the erosion of the planet's capability to absorb our wastes. Equity issues remain stubbornly difficult to solve. This situation is novel in its speed, its global scale and its threat to the resilience of the Earth System. The advent of the Anthropence, the time interval in which human activities now rival global geophysical processes, suggests that we need to fundamentally alter our relationship with the planet we inhabit. Many approaches could be adopted, ranging from geoengineering solutions that purposefully manipulate parts of the Earth System to becoming active stewards of our own life support system. The Anthropocene is a reminder that the Holocene, during which complex human societies have developed, has been a stable, accommodating environment and is the only state of the Earth System that we know for sure can support contemporary society. The need to achieve effective planetary stewardship is urgent. As we go further into the Anthropocene, we risk driving the Earth System onto a trajectory toward more hostile states from which we cannot easily return.  相似文献   
458.
Recovery from anthropogenic acidification in streams and lakes is well documented across the northern hemisphere. In this study, we use 1996–2009 data from the four Swedish Integrated Monitoring catchments to evaluate how the declining sulfur deposition has affected sulfate, pH, acid neutralizing capacity, ionic strength, aluminum, and dissolved organic carbon in soil water, groundwater and runoff. Differences in recovery rates between catchments, between recharge and discharge areas and between soil water and groundwater are assessed. At the IM sites, atmospheric deposition is the main human impact. The chemical trends were weakly correlated to the sulfur deposition decline. Other factors, such as marine influence and catchment features, seem to be as important. Except for pH and DOC, soil water and groundwater showed similar trends. Discharge areas acted as buffers, dampening the trends in streamwater. Further monitoring and modeling of these hydraulically active sites should be encouraged.  相似文献   
459.
Metal (i.e. Ag, As, Ca, Cd, Co, Cu, Mn, Pb and Zn) and metallothionein (MT) concentrations in the soft tissue of Littorina littorea were measured along the heavily polluted Western Scheldt (WS) and relatively clean Eastern Scheldt (ES) estuary. Along the WS metal and MT levels in periwinkles reflected the known downstream decreasing pollution gradient. Surprisingly in ES animals As, Mn and Zn concentrations decreased from east to west reflecting past pollution. Compared to the WS metal concentrations of ES periwinkles were significantly lower and both estuaries were maximally discriminated from each other based on their Cd soft tissue concentration using a canonical discriminant analysis. Furthermore, no overall difference was found in MT levels among animals from both estuaries. Using previously obtained condition data (i.e. dry/wet weight ratio and lipid content) the relation between soft tissue metal concentration (i.e. Cd, Cu and Zn) and fitness indicators (i.e. MT and condition data) was examined using a canonical correlation analysis. Periwinkles with a high metal load (i.e. Cd and Zn) also had high MT levels but were in a relatively poor condition.  相似文献   
460.
Is nitrate harmful to humans? Are the current limits for nitrate concentration in drinking water justified by science? There is substantial disagreement among scientists over the interpretation of evidence on the issue. There are two main health issues: the linkage between nitrate and (i) infant methaemoglobinaemia, also known as blue baby syndrome, and (ii) cancers of the digestive tract. The evidence for nitrate as a cause of these serious diseases remains controversial. On one hand there is evidence that shows there is no clear association between nitrate in drinking water and the two main health issues with which it has been linked, and there is even evidence emerging of a possible benefit of nitrate in cardiovascular health. There is also evidence of nitrate intake giving protection against infections such as gastroenteritis. Some scientists suggest that there is sufficient evidence for increasing the permitted concentration of nitrate in drinking water without increasing risks to human health. However, subgroups within a population may be more susceptible than others to the adverse health effects of nitrate. Moreover, individuals with increased rates of endogenous formation of carcinogenic N-nitroso compounds are likely to be susceptible to the development of cancers in the digestive system. Given the lack of consensus, there is an urgent need for a comprehensive, independent study to determine whether the current nitrate limit for drinking water is scientifically justified or whether it could safely be raised.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号