首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   5篇
环保管理   18篇
污染及防治   1篇
评价与监测   1篇
  2016年   4篇
  2015年   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  1999年   1篇
排序方式: 共有20条查询结果,搜索用时 62 毫秒
11.
12.
The availability of freshwater is a prerequisite for municipal development and agricultural production, especially in the arid and semiarid portions of the western United States (U.S.). Agriculture is the leading user of water in the U.S. Agricultural water use can be partitioned into green (derived from rainfall) and blue water (irrigation). Blue water can be further subdivided by source. In this research, we develop a hydrologic balance by 8‐Digit Hydrologic Unit Code using a combination of Soil and Water Assessment Tool simulations and available human water use estimates. These data are used to partition agricultural groundwater usage by sustainability and surface water usage by local source or importation. These predictions coupled with reported agricultural yield data are used to predict the virtual water contained in each ton of corn, wheat, sorghum, and soybeans produced and its source. We estimate that these four crops consume 480 km3 of green water annually and 23 km3 of blue water, 12 km3 of which is from groundwater withdrawal. Regional trends in blue water use from groundwater depletion highlight heavy usage in the High Plains, and small pockets throughout the western U.S. This information is presented to inform water resources debate by estimating the cost of agricultural production in terms of water regionally. This research illustrates the variable water content of the crops we consume and export, and the source of that water.  相似文献   
13.
Storm water runoff is increasingly assessed for fecal indicator organisms (e.g., Escherichia coli, E. coli) and its impact on contact recreation. Concurrently, use of autosamplers along with logistic, economic, technical, and personnel barriers is challenging conventional protocols for sample holding times and storage conditions in the field. A common holding time limit for E. coli is 8 h with a 10 °C storage temperature, but several research studies support longer hold time thresholds. The use of autosamplers to collect E. coli water samples has received little field research attention; thus, this study was implemented to compare refrigerated and unrefrigerated autosamplers and evaluate potential E. coli concentration differences due to field storage temperature (storms with holding times ≤24 h) and due to field storage time and temperature (storms >24 h). Data from 85 runoff events on four diverse watersheds showed that field storage times and temperatures had minor effects on mean and median E. coli concentrations. Graphs and error values did, however, indicate a weak tendency for higher concentrations in the refrigerated samplers, but it is unknown to what extent differing die-off and/or regrowth rates, heterogeneity in concentrations within samples, and laboratory analysis uncertainty contributed to the results. The minimal differences in measured E. coli concentrations cast doubt on the need for utilizing the rigid conventional protocols for field holding time and storage temperature. This is not to say that proper quality assurance and quality control is not important but to emphasize the need to consider the balance between data quality and practical constraints related to logistics, funding, travel time, and autosampler use in storm water studies.  相似文献   
14.
Science-based sampling methodologies are needed to enhance water quality characterization for setting appropriate water quality standards, developing Total Maximum Daily Loads, and managing nonpoint source pollution. Storm event sampling, which is vital for adequate assessment of water quality in small (wadeable) streams, is typically conducted by manual grab or integrated sampling or with an automated sampler. Although it is typically assumed that samples from a single point adequately represent mean cross-sectional concentrations, especially for dissolved constituents, this assumption of well-mixed conditions has received limited evaluation. Similarly, the impact of temporal (within-storm) concentration variability is rarely considered. Therefore, this study evaluated differences in stormwater quality measured in small streams with several common sampling techniques, which in essence evaluated within-channel and within-storm concentration variability. Constituent concentrations from manual grab samples and from integrated samples were compared for 31 events, then concentrations were also compared for seven events with automated sample collection. Comparison of sampling techniques indicated varying degrees of concentration variability within channel cross sections for both dissolved and particulate constituents, which is contrary to common assumptions of substantial variability in particulate concentrations and of minimal variability in dissolved concentrations. Results also indicated the potential for substantial within-storm (temporal) concentration variability for both dissolved and particulate constituents. Thus, failing to account for potential cross-sectional and temporal concentration variability in stormwater monitoring projects can introduce additional uncertainty in measured water quality data.  相似文献   
15.
When improperly managed, land application of animal manures can harm the environment; however, limited watershed-scale runoff water quality data are available to research and address this issue. The water quality impacts of conversion to poultry litter fertilization on cultivated and pasture watersheds in the Texas Blackland Prairie were evaluated in this three-year study. Edge-of-field N and P concentrations and loads in surface runoff from new litter application sites were compared with losses under inorganic fertilization. The impact on downstream nutrient loss was also examined. In the fallow year with no fertilizer application, nutrient losses averaged 3 kg N ha(-1) and 0.9 kg P ha(-1) for the cultivated watersheds and were below 0.1 kg ha(-1) for the pasture watersheds. Following litter application, PO(4)-P concentrations in runoff were positively correlated to litter application rate and Mehlich-3 soil P levels. Following litter application, NO(3)-N and NH(4)-N concentrations in runoff were typically greater from cultivated watersheds, but PO(4)-P concentrations were greater for the pasture watersheds. Total N and P loads from the pasture watersheds (0.2 kg N ha(-1) and 0.7 kg P ha(-1)) were significantly lower than from the cultivated watersheds (32 kg N ha(-1) and 5 kg P ha(-1)) partly due to lower runoff volumes from the pasture watersheds. Downstream N and P concentrations and per-area loads were much lower than from edge-of-field watersheds. Results demonstrate that a properly managed annual litter application (4.5 Mg ha(-1) or less depending on litter N and P content) with supplemental N should supply necessary nutrients without detrimental water quality impacts.  相似文献   
16.
Received for publication December 22, 2004. Research was initiated to study the interaction between soil amendments (lime, gypsum, and ferrous sulfate) and dissolved molybdate reactive phosphorus [RP(<0.45)] losses from manure applications from concentrated runoff flow through a sod surface. Four run-over boxes (2.2-m2 surface area) were prepared for each treatment with a bermudagrass [Cynodon dactylon (L.) Pers.] sod surface (using sod blocks) and composted dairy manure was surface-applied at rates of 0, 4.5, 9, or 13.5 Mg ha-1. The three soil amendments were then applied to the boxes. Two 30-min runoff events were conducted and runoff water was collected at 10-min intervals and analyzed for RP(<0.45). Results indicated that the addition of ferrous sulfate was very effective at reducing the level of RP(<0.45). in runoff water, reducing RP(<0.45) from 1.3 mg L(-1) for the highest compost rate with no amendment to 0.2 mg L(-1) for the ferrous sulfate in the first 10 min of runoff. Lime and gypsum showed a small impact on reducing RP(<0.45), with a reduction in the first 10 min to 0.9 and 0.8 mg L(-1), respectively. The ferrous sulfate reduced the RP(<0.45) in the tank at the end of the first runoff event by 66.3% compared with no amendment. In the second runoff event, the ferrous sulfate was very effective at reducing RP(<0.45) in runoff, with no significant differences in RP(<0.45) with application of 13.5 Mg ha(-1) compost compared with no manure application. The results indicate that the addition of ferrous sulfate may greatly reduce RP(<0.45) losses in runoff and has considerable potential to be used on pasture, turfgrass, and filter strips to reduce the initial RP(<0.45) losses from manure application to the environment.  相似文献   
17.
In the field of watershed modeling, the impact of measurement uncertainty (MU) on calibration results indicates the potential issue of inaccurate model predictions. It is important to note that MU refers to the uncertainty in measured data such as flow and nutrient values that are used to evaluate model outputs. The calculation of error statistics assuming measured data are deterministic may not be appropriate as has been frequently stated in literature. Although MU can affect model calibration results, it is rarely incorporated in modeling practice. MU can be incorporated in two schemes: explicitly incorporated (MU‐EI) during model calibration and post‐processed (MU‐PP) after calibration is completed. In this study, both schemes are implemented in a case study of the Arroyo Colorado Watershed, Texas. Unexpectedly, no substantial differences were observed between each scheme for flow predictions. Although MU did not cause dramatic differences in most sediment and NH4‐N predictions, error statistics were affected in cases with MU greater than 50%, especially for sediment and NH4‐N. Therefore, it is concluded that MU may not exert a significant impact on model predictions until certain threshold is reached. This study demonstrates that high levels of uncertainty in measured calibration/validation data significantly affect parameter estimation, especially in the auto‐calibration process.  相似文献   
18.
The potential excessive nutrient and/or microbial loading from mismanaged land application of organic fertilizers is forcing changes in animal waste management. Currently, it is not clear to what extent different rates of poultry litter impact soil microbial communities, which control nutrient availability, organic matter quality and quantity, and soil degradation potential. From 2002 to 2004, we investigated the microbial community and several enzyme activities in a Vertisol soil (fine, smectitic, thermic, Udic Haplustert) at 0 to 15 cm as affected by different rates of poultry litter application to pasture (0, 6.7, and 13.4 Mg ha(-1)) and cultivated sites (0, 4.5, 6.7, 9.0, 11.2, and 13.4 Mg ha(-1)) in Texas, USA. No differences in soil pH (average: 7.9), total N (pasture: 2.01-3.53, cultivated: 1.09-1.98 g kg(-1) soil) or organic C (pasture average: 25-26.7, cultivated average: 13.9-16.1 g kg(-1) soil) were observed following the first four years of litter application. Microbial biomass carbon (MBC) and nitrogen (MBN) increased at litter rates greater than 6.7 Mg ha(-1) (pasture: MBC = >863, MBN = >88 mg kg(-1) soil) compared to sites with no applied litter (MBC = 722, MBN = 69 mg kg(-1) soil). Enzyme activities of C (beta-glucosidase, alpha-galactosidase, beta-glucosaminidase) or N cycling (beta-glucosaminidase) were increased at litter rates greater than 6.7 Mg ha(-1). Enzyme activities of P (alkaline phosphatase) and S (arylsulfatase) mineralization showed the same response in pasture, but they were only increased at the highest (9.0, 11.2, and 13.4 Mg ha(-1)) litter application rates in cultivated sites. According to fatty acid methyl ester (FAME) analysis, the pasture soils experienced shifts to higher bacterial populations at litter rates of 6.7 Mg ha(-1), and shifts to higher fungal populations at the highest litter application rates in cultivated sites. While rates greater than 6.7 Mg ha(-1) provided rapid enhancement of the soil microbial populations and enzymatic activities, they result in P application in excess of crop needs. Thus, studies will continue to investigate whether litter application at rates below 6.7 Mg ha(-1), previously recommended to maintain water quality, will result in similar improved soil microbial and biochemical functioning with continued annual litter application.  相似文献   
19.
The urban landscape is comprised of many land uses, none more intensively managed than turfgrass; however, quantification of nutrient losses from specific land uses within urban watersheds, specifically golf courses is limited. Nitrate (NO(3)-N) and dissolved reactive phosphorus (DRP) were measured on a golf course in Austin, TX, USA from April 1, 1998 to March 31, 2003. NO(3)-N and DRP concentrations measured in storm flow were significantly greater exiting the course compared to those entering the course. Significant differences were also measured in baseflow NO(3)-N concentrations. The measured loading from the course was 4.0kg NO(3)-Nha(-1)yr(-1) (11% of applied) and 0.66kg DRPha(-1)yr(-1) (8% of applied). The resulting concentrations contributed by the course were 1.2mgL(-1) NO(3)-N and 0.2mgL(-1) DRP. At these levels, NO(3)-N poses minimal environmental risk. However, the DRP concentration is twice the recommended level to guard against eutrophication.  相似文献   
20.
ABSTRACT: Turfgrass systems are one of the most intensively managed land uses in the United States. Establishment and maintenance of high quality turfgrass usually implies substantial inputs of water, nutrients, and pesticides. The focus of this work was to quantify the concentration and loading of a typically maintained municipal turfgrass environment on surface water. Water quantity and quality data were collected from a golf course in Austin, Texas, and analyzed for a 13‐month period from March 20, 1998, to April 30, 1999. Twenty‐two precipitation events totaling 722 mm, produced an estimated 98 mm of runoff. Nutrient analysis of surface runoff exiting the course exhibited a statistically significant (p < 0.05) increase in median nitrate plus nitrite nitrogen (NO3+NO2‐N) concentration compared to runoff entering the course, a statistically significant decrease in ammonia nitrogen (NH4‐N), but no difference in orthophosphate (PO4‐P). During the 13‐month period, storm runoff contributed an estimated 2.3 kg/ha of NO3+NO2‐N and 0.33 kg/ha of PO4‐P to the stream. Storm flow accounted for the attenuation of 0.12 kg/ha of NH4‐N. Baseflow nutrient analysis showed a statistically significant increase in median NO3+NO2‐N, a significant reduction in NH4‐N, and no change in PO4‐P. Estimated NO3+NO2‐N mass in the baseflow was calculated as 4.7 kg/ha. PO4‐P losses were estimated at 0.06 kg/ha, while 0.8 kg/ha of NH4‐N were attenuated in baseflow over the study period. Even though nutrient concentrations exiting the system rarely exceeded nutrient screening levels, this turfgrass environment did contribute increased NO3+NO2‐N and PO4‐P loads to the stream. This emphasizes the need for parallel studies where management intensity, soil, and climate differ from this study and for golf course managers to utilize an integrated management program to protect water quality while maintaining healthy turfgrass systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号