首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   6篇
  国内免费   1篇
安全科学   8篇
废物处理   20篇
环保管理   31篇
综合类   51篇
基础理论   48篇
环境理论   2篇
污染及防治   78篇
评价与监测   8篇
社会与环境   12篇
灾害及防治   4篇
  2023年   9篇
  2022年   9篇
  2021年   6篇
  2020年   2篇
  2019年   4篇
  2018年   7篇
  2017年   7篇
  2016年   7篇
  2015年   9篇
  2014年   12篇
  2013年   25篇
  2012年   15篇
  2011年   21篇
  2010年   13篇
  2009年   11篇
  2008年   12篇
  2007年   11篇
  2006年   6篇
  2005年   8篇
  2004年   14篇
  2003年   7篇
  2002年   6篇
  2001年   1篇
  2000年   5篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
  1966年   1篇
  1961年   1篇
  1959年   1篇
  1957年   1篇
  1951年   2篇
  1950年   1篇
排序方式: 共有262条查询结果,搜索用时 234 毫秒
101.
102.
There are few efficient, rapid and cheap methods to remove toxic metals from contaminated waters. Here we hypothesised that cathodic protection, an existing method used to control the corrosion of metallic structures, may trap toxic metals. Indeed, in seawater, the application of a cathodic current on a metallic structure induces the precipitation of limestone (CaCO3) and magnesium dihydroxyde (Mg(OH)2), thus forming a calcareous deposit on the metal surface. We therefore presumed that such calcareous deposit may trap metals dissolved in waters. Actually calcareous deposit formation has never been studied in the presence of dissolved metallic contaminants such as nickel. Here we tested ionic nickel (Ni2+) precipitation in calcareous deposit with a galvanized steel electrode by spiking artificial seawater with a NiCl2 salt during 7 days of applied current. We analysed deposit surface and cross section by µ-Raman spectroscopy and scanning electron microscopy (SEM) with X-ray microanalysis. Ni concentration in the deposit was quantified by inductively coupled plasma analysis, after deposit dissolution in 60% HNO3. Results show that in 7 days up to 24% of nickel can be trapped in the calcareous deposit. Scanning electron microscopy reveals that Ni is trapped under a pure CaCO3 layer of aragonite. Raman spectra show that nickel is incorporated as nickel dihydroxyde (Ni(OH)2), as evidence by vibration bands at 446 and 510 cm?1. Overall our findings disclose a new and efficient method, calcareous electrochemical precipitation, which has potential applications to remove toxic metals from contaminated waters.  相似文献   
103.
Trifolium repens and Lolium perenne were exposed as both monocultures and two-species mixtures to an episodic rural ozone regime in large, well-watered containers within solardomes for 12 weeks. There were reductions in biomass for T. repens, but not L. perenne, and the proportion of T. repens decreased in ozone-exposed mixtures compared to the control. In addition, leaf biomass of T. repens was maintained at the expense of biomass partitioning to the stolons. The decreased growth corresponded with decreased photosynthetic capacity for T. repens, however, by the end of the exposure there was also decreased photosynthetic capacity of L. perenne, a species previously considered insensitive to ozone. The observed decreases in photosynthetic efficiency and capacity in elevated ozone indicate that the ability of such ubiquitous vegetation to act as a sink for atmospheric carbon may be reduced in future climates.  相似文献   
104.
105.
106.
The purpose of the present statistical analysis was the assessment of the relation between time series of environmental factors and of frequencies of diseases of the respiratory system in pre-school children. During about one year, daily measurements of air pollutants and climatic variables were taken. During the same period of time two series of medical data were collected: (i) The daily relative number of pre-school children, exhibiting diseases of the respiratory tracts who either came to the outpatients' clinic of the children's hospital or were reported by paediatricians in Basle (ENTRIES). (ii) The daily relative frequency of symptoms of the respiratory tracts observed in a group of randomly selected pre-school children (SYMPTOMS).By means of transfer function models the relation between the two target variables and the explaining variables was analysed. Several practical problems did arise: Choice of the appropriate transformation of the different series, interpretation of the crosscorrelation function using different methods of prewhitening, time splitting and nonstationarity of the crosscorrelation structure. In particular, it was found that after prewhitening the crosscorrelation function between the explanatory series SO2 and the response series SYMPTOMS changes with time. While during the winter period an instantaneous relation between these two series (and to a lesser extent between NO2 and SYMPTOMS) was identified, no such relation was found for the other seasons.  相似文献   
107.
Fitzpatrick D  Corish J  Hayes B 《Chemosphere》2004,55(10):1309-1314
The modelling of skin permeability is important for transdermal drug delivery, in the cosmetic industry and for risk assessment attendant on dermal exposure to toxic substances. The two principal methods currently used are quantitative structure-activity relationships (QSARs), used in the main to predict permeability coefficients, and mathematical modelling based on analytical or numerical solutions to the relevant partition and transport equations and used to predict the amount of a substance permeating through the skin. This paper will assess recent progress in this area and suggest what will be needed for future advancements. The considerable effort invested in the development of QSARs during the past decade has resulted in only rather modest progress. Further significant improvement in our ability to predict percutaneous permeability is likely to require the measurement of new data under carefully controlled conditions and its fitting to new QSAR equations. Reliable assessments of risks following dermal exposures will demand new integrated mathematical models that include the variables associated with the exposure and penetration processes as well as the factors that control the subsequent passage of the penetrant into the systemic system.  相似文献   
108.
A novel method to remediate dense nonaqueous phase liquid (DNAPL) source zones that incorporates in situ density conversion of DNAPL via alcohol partitioning followed by displacement with a low interfacial tension (IFT) surfactant flood has been developed. Previous studies demonstrated the ability of the density-modified displacement (DMD) method to recover chlorobenzene (CB) and trichloroethene (TCE) from heterogeneous porous media without downward migration of the dissolved plume or free product. However, the extent of alcohol (n-butanol) partitioning required for in situ density conversion of high-density NAPLs, such as tetrachloroethene (PCE), could limit the utility of the DMD method. Hence, the objective of this study was to compare the efficacy of two n-butanol delivery approaches: an aqueous solution of 6% (wt) n-butanol and a surfactant-stabilized macroemulsion containing 15% (vol) n-butanol in water, to achieve density reduction of PCE-NAPL in two-dimensional (2-D) aquifer cells. Results of liquid-liquid equilibrium studies indicated that density conversion of PCE relative to water occurred at an n-butanol mole fraction of 0.56, equivalent to approximately 5 ml n-butanol per 1 ml of PCE when in equilibrium with an aqueous solution. In 2-D aquifer cell studies, density conversion of PCE was realized using both n-butanol preflood solutions, with effluent NAPL samples exhibiting density reductions ranging from 0.51 to 0.70 g/ml. Although the overall PCE mass recoveries were similar (91% and 93%) regardless of the n-butanol delivery method, the surfactant-stabilized macroemulsion preflood removed approximately 50% of the PCE mass. In addition, only 1.2 pore volumes of the macroemulsion solution were required to achieve in situ density conversion of PCE, compared to 6.4 pore volumes of the 6% (wt) n-butanol solution. These findings demonstrate that use of the DMD method with a surfactant-stabilized macroemulsion containing n-butanol holds promise as an effective source zone remediation technology, allowing for efficient recovery of PCE-DNAPL while mitigating downward migration of the dissolved plume and free product.  相似文献   
109.
Acute toxicity of 30 offshore E & P (Exploration and Production) chemicals was measured using the three standard test organisms Daphnia magna (freshwater cladoceran), Acartia tonsa (marine copepod) and Skeletonema costatum (marine diatom alga). Test chemicals included 20 water-soluble and 10 (partially) non-soluble products. For 22 out of the 30 chemicals, the difference in sensitivity between the three tests varied within one order of magnitude. A very good correlation was found between the two marine tests (r = 0.96, P < 0.01, n = 30), and a correlation coefficient of r = 0.78 (P < 0.01, n = 30) was found between D. magna and both A. tonsa and S. costatum, individually. When the comparison of D. magna and A. tonsa sensitivity was based only on the water-soluble chemicals, a significantly higher correlation was obtained (r = 0.84, n = 20), indicating that the sample preparation method used for the (partially) non-soluble chemicals (the water accommodated fraction (WAF) method) induces additional variation between tests performed with different test media. (Partially) non-soluble chemicals are characterised by phase separation or precipitation at the concentrations used for testing. In a WAF-based test, each test concentration/exposure level is prepared separately, and following mixing and separation, only the water phase is used for testing. Toxicity is related to the amount of substance originally added to the mixing vessels. For 25 of the 30 chemicals, D. magna was found to be less sensitive than the marine copepod by a factor >2. The generally higher sensitivity of the marine toxicity tests compared to the Daphnia test emphasise the importance of using marine data for environmental hazard classification as well as for environmental risk assessment purposes.  相似文献   
110.
During various seasons from May 2001 until July/August 2003, the lipid dynamics of the pteropod Clione limacina from Kongsfjorden, Svalbard, were investigated with respect to ontogenetic development and life-cycle. Polytrochous larvae, which were dominant in spring (April, May), composed the lipid-richest specimens of the population, with total lipid of about 50% of dry mass (%DM). Major lipid classes were triacylglycerols (TAG) and 1-O-alkyldiacylglycerol ethers (DAGE), accounting on average for 53.1 and 21.9% of total lipid, respectively. Until summer, larvae grew to adults by utilising their storage lipids. In July/August, lipids were depleted to about 10%DM due to maturation and reproduction. Almost all animals in autumn (September) were mature and able to replenish their lipid deposits by accumulating DAGE (26.7%) and TAG (39.6%). This is probably the prerequisite for successful overwintering.Principal component analysis (PCA), based on the fatty acid compositions, revealed ontogenetic differences between polytrochous larvae, and small and full-grown adults. Higher proportions of 18:4(n-3) and 14:0 were found in polytrochous larvae and smaller adults during spring. Both fatty acids were highly significantly correlated with the proportions of TAG, which were used for growth and development because they are presumably easier to metabolise. PCA also divided C. limacina specimens into DAGE-rich and DAGE-poor. We suggest that DAGE are a long-term energy store and hypothesise that they are necessary during periods of food scarcity, but may also serve as an energy source for reproduction. The fatty acids 17:1(n-8), 15:0, 16:1(n-7) and 18:1(n-7) were significantly correlated with the proportion of DAGE but not with TAG. These fatty acids, which do not originate from their only prey, Limacina helicina, are synthesised de novo. Their abundance reflects an efficient lipid production by C. limacina. Based on the results of lipid biosynthesis and accumulation in combination with the population structure, we suggest that C. limacina has at least a 2-year life-cycle in Svalbard waters.Communicated by M. Kühl, Helsingør  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号