The interaction of nanoplastics (NPls) and engineered nanoparticles (ENPs) with organic matter and environmental pollutants is particularly important. Therefore, their behavior should be investigated under the different salinity conditions, mimicking rivers and coastal environments, to understand this phenomenon in those areas. In this work, we analyzed the elementary characteristics of polystyrene-PS (unmodified surface and modified with amino or carboxyl groups) and titanium dioxide-TiO2 nanoparticles. The effect of salinity on their colloidal properties was studied too. Also, the interaction with different types of proteins (bovine serum albumin-BSA and tilapia proteins), as well as the formation of the BSA corona and its effect on the colloidal stability of nanoparticles, were evaluated. The morphology and dispersion of sizes were more uniform in unmodified-surface PS-NPs (70.5?±?13.7 nm) than in TiO2-NPs (131.2?±?125.6 nm). Likewise, Rama spectroscopy allowed recognizing peaks associated with the PS phenyl group aromatic ring in unmodified-surface PS-NPs (621, 1002, 1582, and 1602 cm?1). For TiO2-NPs, the data suggest belonging to the tetragonal form, also known as rutile (445, 610 cm?1). The elevation of salinity dose-dependently decreased NP colloid stability, with more significant variation in the PS-NPs compared to TiO2-NPs. The organic matter is also involved in this phenomenon, differentially as a function of time compared to its absence (unmodified-surface PS-NPs 30 psu/TOC 5 mgL?1/24 h: 2876.6?±?378.03 nm; unmodified-surface PS-NPs 30 psu/24 h: 2133?±?49.57 nm). In general, the TiO2-NPs demonstrated greater affinity with all proteins tested (0.066 g/L). It was observed that morphology, size, and surface chemical modification intervene in a relevant way in the interaction of the nanoparticles with bovine serum albumin (unmodified-surface PS-NPs 298 K: 6.08E+02; 310 K: 6.63E+02; TiO2-NPs 298 K: 8.76E+02; 310 K: 1.05E+03 L mol?1) and tilapia tissues proteins (from blood, gills, liver, and brain). Their morphology and size also determined the protein corona formation and the NPs’ agglomeration. These findings can provide references during knowledge transfer between NPls and ENPs.
Environmental Science and Pollution Research - This paper discussed the possibility of replacing the internal combustion engine of the series plug-in hybrid electric vehicle (PHEV) powered by... 相似文献
Environmental Science and Pollution Research - Mercury (Hg) is a great concern for marine environments. Bird feathers have been widely used to assess Hg pollution. In this study, we determine... 相似文献
Environmental Science and Pollution Research - Banana is one of the most important agricultural products of Ecuador. It relies on intensive monoculture cropping systems with a large volume of... 相似文献
Environmental Science and Pollution Research - The order Odonata has been regularly used as an indicator of the ecosystem’s condition. The objective of this review was to analyze the... 相似文献
Environmental Science and Pollution Research - This work describes the production/characterization of low molar mass chitosan nanoparticles derived from waste shrimp shells (SSC), as well as from a... 相似文献
Environmental Science and Pollution Research - The Fundão Dam collapsed, on November 5th, 2015, dumping more than 50 million/m3 of iron ore tailings, enriched with metals, into the Doce River... 相似文献
Environmental Science and Pollution Research - Flash floods represent a serious threat to wildlife, water biota, and human life in pre-alpine regions, particularly in recent historical memory. The... 相似文献
In this paper we present the results of the photocatalytic disinfection of urban waste water. Two microbial groups, total coliforms and Streptococcus faecalis, have been used as indexes to test disinfection efficiencies. Different experimental parameters have been checked, such as the effect of TiO2, solar or UV-lamp light and pH. Disinfection of water samples has been achieved employing both UV-lamp and solar light in agreement with data shown by other authors. The higher disinfection rates obtained employing an UV-lamp may be explained by the stronger incident light intensity. Nevertheless no consistent differences have been found between TiO2-photocatalysis and direct solar or UV-lamp light irradiation at natural sample pH (7.8). At pH 5 the presence of TiO2 increases the relative inactivation rate compared with the absence of the catalyst. After the photocatalytic bacterial inactivation, the later bacterial reappearance was checked for total coliforms at natural pH and pH 5, with and without TiO2. Two h after the photocatalytic treatment, CFU increment was almost nill. But 24 and 48 h later an important bacterial CFU increment was observed. This CFU increment is slower after irradiation with TiO2 at pH 5 in non-air-purged samples. 相似文献
Polycyclic aromatic hydrocarbons (PAHs) were analysed in mosses (Hypnum cupressiforme) and pine needles (Pinus sylvestris) collected in the Czech Republic between 1988-94 at a regional background site in Kosetice, south Bohemia (1988-94) and two industrial sources. One industrial site (sampled 1989-91) in middle Moravia, was near a factory producing PAHs, carbon black and phthalates, the other (sampled 1991-93) near a coal and gas fuel production plant in western Bohemia. Selected chlorinated pesticides and polychlorinated biphenyl congeners were also analysed in samples at the regional background site. This study clearly shows that vegetation sampling can be used to show spatial differences in the atmospheric burden of a range of persistent organic pollutants with differences in the mixtures of compounds reflecting differences in their regional or local use/atmospheric emission. 相似文献