首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   277篇
  免费   4篇
  国内免费   19篇
安全科学   13篇
废物处理   29篇
环保管理   24篇
综合类   59篇
基础理论   42篇
污染及防治   99篇
评价与监测   21篇
社会与环境   10篇
灾害及防治   3篇
  2023年   6篇
  2022年   9篇
  2021年   8篇
  2020年   3篇
  2019年   8篇
  2018年   10篇
  2017年   13篇
  2016年   12篇
  2015年   9篇
  2014年   11篇
  2013年   20篇
  2012年   16篇
  2011年   18篇
  2010年   15篇
  2009年   13篇
  2008年   20篇
  2007年   15篇
  2006年   15篇
  2005年   11篇
  2004年   6篇
  2003年   9篇
  2002年   9篇
  2001年   7篇
  2000年   5篇
  1999年   7篇
  1998年   3篇
  1997年   4篇
  1994年   4篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1984年   1篇
  1979年   1篇
  1977年   1篇
  1964年   1篇
  1961年   1篇
  1958年   2篇
排序方式: 共有300条查询结果,搜索用时 31 毫秒
291.
The aim of this study was to measure the air concentrations of carbon dioxide (CO2) and formaldehyde (HCHO) in daycare centers to determine relevant influencing factors, including temperature, relative humidity (RH), type of facility, number of children, type of ventilation system, ventilation time, and air cleaning system. The authors measured HCHO, CO2, temperature, and RH in the center of classrooms in 289 daycare centers. Spearman’s correlation and Mann–Whitney analyses were used to examine the relationships and differences in HCHO and CO2 for varying temperatures, RH values, and categorical indoor environmental factors. There were no significant differences in the HCHO and CO2 air concentrations with varying numbers of children, ventilation times, or ventilation and air cleaning system types. However, both the HCHO and CO2 air concentrations were significantly different for varying RH values, which were divided into five categories (p < 0.001). Only the HCHO air concentrations were significantly different for varying temperatures, which were divided into five categories (p < 0.001). Significant correlations were found between HCHO air concentrations and the temperature (r = 0.35, p < 0.0001), RH (r = 0.51, p < 0.0001), and CO2 (r = 0.36, p < 0.0001). The study results support maintaining an appropriate temperature and RH range for reducing airborne HCHO in daycare centers. Further research is needed to elucidate the precise mechanisms responsible for the relationships observed in this study.

Implications: Data from 289 daycare centers in Seoul, South Korea, indicate that HCHO concentrations show a positive correlation with indoor temperature and relative humidity. This indicates that keeping temperatures low will help keep HCHO concentrations low, by both a direct and an indirect effect, since low temperatures also cause low relative humidity.  相似文献   

292.
A comprehensive assessment of indoor carbonyl compounds for the academic staff, workers, and students was conducted on a university campus in Xiamen, China. A total of 15 representative environment categories, including 12 indoor workplaces and three residential units, were selected. The potential indoor pollution sources were identified based on the variability in the molar compositions and correlation analyses for the target carbonyls. Furnishing materials, cooking emissions, and electronic equipment, such as photocopiers, can generate various carbonyls in the workplace. Comparison studies were conducted in the clerical offices, demonstrating that off-gases from wooden furniture and lacquer coatings, environmental tobacco smoke (ETS), and the use of cleaning reagents elevated the indoor carbonyl levels. The measured concentrations of formaldehyde and acetaldehyde in most locations surpassed the exposure limit levels. The lifetime cancer hazard risk (R) associated with formaldehyde was above the concern risk level (1 × 10?6) in all of the workplaces. The results indicate that formaldehyde exposure is a valid occupational health and safety concern. Wooden furniture and refurbishing materials can pose serious health threats to occupants. The information in this study could act as a basis for future indoor air quality monitoring in Mainland China.
Implications:A university campus represents a microscale city environment consisting of all the working, living, and commercial needs of staff and students. The scope of this investigation covers 21 hazardous carbonyl species based on samples collected from 15 categories of workplaces and residential building in a university campus in southern China. Findings of the study provide a comprehensive assessment of indoor air quality with regards to workers’ health and safety. No similar study has been carried out in China.  相似文献   
293.
ABSTRACT

The introduction of reformulated gasolines significantly reduced exhaust hydrocarbon (HC) mass emissions, but few data are available concerning how these new fuels affect exhaust reactivity. Similarly, while it is well established that high-emitting vehicles contribute a significant portion of total mobile source HC mass emissions, it is also important to evaluate the exhaust reactivity from these vehicles. The objective of this study was to evaluate the relative influence on in-use vehicle exhaust reactivity of three critical factors: fuel, driving cycle, and vehicle emission status. Nineteen in-use vehicles were tested with seven randomly assigned fuel types and two driving cycles: the Federal Test Procedure (FTP) and the Unified Cycle (UC). Total exhaust reactivity was not statistically different between the FTP and UC cycles but was significantly affected by fuel type. On average, the exhaust reactivity for California Phase 2 fuel was the lowest (16 % below the highest fuel type) among the seven fuels tested for cold start emissions. The average exhaust reactivity for high-emitting vehicles was significantly higher for hot stabilized (11%) and hot start (15%) emissions than for low-emitting vehicles. The exhaust reactivities for the FTP and UC cycles for light-end HCs and carbonyls were significantly different for the hot stabilized mode. There was a significant fuel effect on the mean specific reactivity (SR) for the mid-range HCs, but not for light-end HCs or carbonyls, while vehicle emission status affected the mean SR for all three HC compound classes.  相似文献   
294.
A greenhouse pot experiment was conducted to compare the phytoextraction efficiencies of Cd by hyper-accumulating Alfred stonecrop (Sedum alfredii Hance) and fast-growing perennial ryegrass (Lolium perenne L.) from a Cd-contaminated (1.6 mg kg−1) acidic soil, and their responses to the inoculations of two arbuscular mycorrhizal (AM) fungal strains, Glomus caledonium 90036 (Gc) and Glomus mosseae M47V (Gm). Ryegrass and stonecrop were harvested after growing for 9 and 27 wk, respectively. Without AM fungal inoculation, the weekly Cd extraction by stonecrop (8.0 μg pot−1) was 4.3 times higher than that by ryegrass (1.5 μg pot−1). Both Gc and Gm significantly increased (P < 0.05) root mycorrhizal colonization rates, soil acid phosphatase activities, and available P concentrations, and thereby plant P absorptions (except for Gm-inoculated ryegrass), shoot biomasses, and Cd absorptions (except for Gm-inoculated stonecrop), while only Gc-inoculated stonecrop significantly accelerated (P < 0.05) the phytoextraction efficiency of Cd by 78%. In addition, both Gc and Gm significantly decreased (P < 0.05) phytoavailable Cd concentrations by 21–38% via elevating soil pH. The results suggested the potential application of hyper-accumulating Alfred stonecrop associated with AM fungi (notably Gc) for both extraction and stabilization of Cd in the in situ treatment of Cd-contaminated acidic soil.  相似文献   
295.
This study quantified Cd, Pb, and Cu content, and the soil–plant transfer factors of these elements in rice paddies within Cam Pha, Quang Ninh province, northeastern Vietnam. The rice paddies are located at a distance of 2 km from the large Coc Sau open-pit coal mine. Electron microprobe analysis combined with backscattered electron imaging and energy-dispersive spectroscopy revealed a relatively high proportion of carbon particles rimmed by an iron sulfide mineral (probably pyrite) in the quartz–clay matrix of rice paddy soils at 20–30 cm depth. Bulk chemical analysis of these soils revealed the presence of Cd, Cu, and Pb at concentrations of 0.146?±?0.004, 23.3?±?0.1, and 23.5?±?0.1 mg/kg which exceeded calculated background concentrations of 0.006?±?0.004, 1.9?±?0.5, and 2.4?±?1.5 mg/kg respectively at one of the sites. Metals and metalloids in Cam Pha rice paddy soils, including As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn, were found in concentrations ranging from 0.2?±?0.1 to 140?±?3 mg/kg, which were in close agreement with toxic metal contents in mine tailings and Coc Sau coal samples, suggesting mining operations as a major cause of paddy soil contamination. Native and model Oryza sativa L. rice plants were grown in the laboratory in a growth medium to which up to 1.5 mg/kg of paddy soil from Cam Pha was added to investigate the effects on plant growth. A decrease in growth by up to 60 % with respect to a control sample was found for model plants, whereas a decrease of only 10 % was observed for native (Nep cai hoa vang variety) rice plants. This result suggests an adaptation of native Cam Pha rice plants to toxic metals in the agricultural lands. The Cd, Cu, and Pb contents of the native rice plants from Cam Pha paddies exceeded permitted levels in foods. Cadmium and Pb were highest in the rice plant roots with concentrations of 0.84?±?0.02 and 7.7?±?0.3 mg/kg, suggesting an intake of these metals into the rice plant as shown, for example, by Cd and Pb concentrations of 0.09?±?0.01 and 0.10?±?0.04 mg/kg respectively in the rice grain endosperm. The adaptation of native rice plants, combined with bioaccumulation ratios of 1?±?0.6 to 1.4?±?0.7 calculated for Cd transfer to the rice grain endosperm, and maximum Cd transfer factors of 4.3?±?2.1 to the plant roots, strongly suggest a continuous input of some toxic metals from coal-mining operations to agricultural lands in the region of Cam Pha. In addition, our results imply a sustained absorption of metals by native rice plant varieties, which may lead to metal accumulation (e.g., Cd) in human organs and in turn to severe disease.  相似文献   
296.
Jiang S  Ho CT  Lee JH  Duong HV  Han S  Hur HG 《Chemosphere》2012,87(6):621-624
Shewanella putrefaciens 200, resistant to high concentration of Hg(II), was selected for co-removal of mercury and selenium from aqueous medium. Biogenic Hg(0) reduced from Hg(II) by S. putrefaciens 200 was captured into extracellular amorphous selenium nanospheres, resulting in the formation of stable HgSe nanoparticles. This bacterial reduction could be a new strategy for mercury removal from aquatic environments without secondary pollution of mercury methylation or Hg(0) volatilization.  相似文献   
297.
Commercial cooking emissions are important air pollution sources in a heavily urbanized city. Exhaust samples were collected in six representative commercial kitchens including Chinese restaurants, Western restaurants, and Western fast-food restaurants in Hong Kong during peak lunch hours. Both gaseous and particulate emissions were evaluated. Eight gaseous and twenty-two particulate polycyclic aromatic hydrocarbons (PAHs) were quantified in this study. In the gaseous phase, naphthalene (67-89%) was the most abundant PAH in all of the exhaust samples. The contribution of acenaphthylene in the gaseous phase was significantly higher in emissions from the Chinese restaurants, whereas fluorene was higher in emissions from the Western cooking style restaurants (i.e., Western restaurants and Western fast-food restaurants). Pyrene is the most abundant particulate PAH in the Chinese restaurants (14-49%) while its contribution was much lower in the Western cooking style restaurants (10-22%). Controlled cooking conditions were monitored in a staff canteen to compare the emissions from several different local cooking styles, including deep frying, steaming, and mixed cooking styles (combination of steaming and frying). Deep frying produced the highest amount of total gaseous PAHs, 6 times higher than the steaming. However, steaming produced the highest particulate emissions. The estimated annual gaseous PAH emissions for the Chinese restaurants, Western restaurants, and Western fast-food restaurants were 255, 173, and 20.2 t y(-1) whereas 252, 1.9, and 0.4 t y(-1) were estimated for particulate phase PAH emissions. The study provides useful information and estimates for PAH emissions from commercial cooking exhaust in Hong Kong.  相似文献   
298.
Ho L  Hoefel D  Bock F  Saint CP  Newcombe G 《Chemosphere》2007,66(11):2210-2218
Taste and odour (T&O) causing compounds, in particular, 2-methylisoborneol (MIB) and geosmin, are a problem for water authorities as they are recalcitrant to conventional water treatment. In this study, biological sand filtration was shown to be an effective process for the complete removal of MIB and geosmin, with removal shown to be predominantly through biodegradation. In addition, MIB and geosmin were also effectively degraded in batch bioreactor experiments using biofilm sourced from one of the sand filters as the microbial inoculum. The biodegradation of MIB and geosmin was determined to be a pseudo-first-order reaction with rate constants ranging between 0.10 and 0.58 d−1 in the bioreactor experiments. Rate constants were shown to be dependent upon the initial concentration of the microbial inoculum but not the initial concentration of MIB and geosmin when target concentrations of 200 and 50 ng l−1 were used. Furthermore, rate constants were shown to increase upon re-exposure of the biofilm to both T&O compounds. Enrichment cultures with subsequent community profile analysis using 16S rRNA-directed PCR-DGGE identified four bacteria most likely involved in the biodegradation of geosmin within the sand filters and bioreactors. These included a Pseudomonas sp., Alphaproteobacterium, Sphingomonas sp. and an Acidobacteriaceae member.  相似文献   
299.
Environmental and Ecological Statistics - Two novel methods of life expectancy estimation, applied to various annual reported demographic datasets, are proposed. First, for datasets that fully...  相似文献   
300.

Ambient PM2.5 is one of the major risk factors for human health, and is not fully explained solely by mass concentration. We examined the short-term associations of cause-specific mortality (i.e., all-cause, cardiovascular, and respiratory mortality) with the 15 chemical constituents and sources of PM2.5 in four metropolitan cities of South Korea during 2014–2018. We found transition metals consistently showed significant associations with all-cause mortality, while the effects of other constituents varied across the cities and for cause of death. Carbonaceous components strongly affected the all-cause, cardiovascular, and respiratory mortality in Daejeon. Secondary inorganic aerosols, SO42? and NH4+, showed significant associations with respiratory mortality in Gwangju. We also found the sources from which species closely linked to mortality generally increased the relative mortality risks. Heavy metal markers from soil or industrial sources were significantly associated with mortality in all cities. However, several sources influenced mortality despite their marker species not being significantly associated with it. Secondary nitrate and secondary sulfate sources were linked to mortality in DJ. This could be attributed to the deep inland location, which might have facilitated formation of secondary inorganic aerosols. In addition, primary sources including mobile and coal combustion seemed to have acute impacts on respiratory mortality in Gwangju. Our findings suggest the necessity of positive matrix factorization (PMF)-based approaches for evaluating health effects of PM2.5 while considering the spatial heterogeneity in the compositions and source contributions of PM2.5.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号