首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43061篇
  免费   369篇
  国内免费   557篇
安全科学   1358篇
废物处理   1911篇
环保管理   5710篇
综合类   6743篇
基础理论   11415篇
环境理论   21篇
污染及防治   11427篇
评价与监测   2831篇
社会与环境   2291篇
灾害及防治   280篇
  2023年   228篇
  2022年   417篇
  2021年   467篇
  2020年   371篇
  2019年   469篇
  2018年   644篇
  2017年   639篇
  2016年   1022篇
  2015年   790篇
  2014年   1203篇
  2013年   3511篇
  2012年   1447篇
  2011年   1917篇
  2010年   1572篇
  2009年   1652篇
  2008年   1957篇
  2007年   2028篇
  2006年   1756篇
  2005年   1473篇
  2004年   1406篇
  2003年   1494篇
  2002年   1350篇
  2001年   1708篇
  2000年   1214篇
  1999年   728篇
  1998年   521篇
  1997年   513篇
  1996年   551篇
  1995年   614篇
  1994年   609篇
  1993年   520篇
  1992年   517篇
  1991年   480篇
  1990年   532篇
  1989年   463篇
  1988年   418篇
  1987年   396篇
  1986年   335篇
  1985年   356篇
  1984年   394篇
  1983年   383篇
  1982年   370篇
  1981年   352篇
  1980年   284篇
  1979年   321篇
  1978年   269篇
  1977年   201篇
  1975年   215篇
  1972年   212篇
  1971年   186篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
401.
402.
The extensive literature on environmental justice has, by now, well defined the essential ingredients of cumulative risk, namely, incompatible land uses and vulnerability. Most problematic is the case when risk is produced by a large aggregation of small sources of air toxics. In this article, we test these notions in an area of Southern California, Southeast Los Angeles (SELA), which has come to be known as Asthmatown. Developing a rapid risk mapping protocol, we scan the neighborhood for small potential sources of air toxics and find, literally, hundreds of small point sources within a 2-mile radius, interspersed with residences. We also map the estimated cancer risks and noncancer hazard indices across the landscape. We find that, indeed, such large aggregations of even small, nondominant sources of air toxics can produce markedly elevated levels of risk. In this study, the risk profiles show additional cancer risks of up to 800 in a million and noncancer hazard indices of up to 200 in SELA due to the agglomeration of small point sources. This is significant (for example, estimates of the average regional point-source-related cancer risk range from 125 to 200 in a million). Most importantly, if we were to talk about the risk contour as if they were geological structures, we would observe not only a handful of distinct peaks, but a general “mountain range” running all throughout the study area, which underscores the ubiquity of risk in SELA. Just as cumulative risk has deeply embedded itself into the fabric of the place, so, too, must intervention seek to embed strategies into the institutions and practices of SELA. This has implications for advocacy, as seen in a recently initiated participatory action research project aimed at building health research capacities into the community in keeping with an ethic of care.  相似文献   
403.
Various approaches are used to subdivide large areas into regions containing streams that have similar reference or background water quality and that respond similarly to different factors. For many applications, such as establishing reference conditions, it is preferable to use physical characteristics that are not affected by human activities to delineate these regions. However, most approaches, such as ecoregion classifications, rely on land use to delineate regions or have difficulties compensating for the effects of land use. Land use not only directly affects water quality, but it is often correlated with the factors used to define the regions. In this article, we describe modifications to SPARTA (spatial regression-tree analysis), a relatively new approach applied to water-quality and environmental characteristic data to delineate zones with similar factors affecting water quality. In this modified approach, land-use-adjusted (residualized) water quality and environmental characteristics are computed for each site. Regression-tree analysis is applied to the residualized data to determine the most statistically important environmental characteristics describing the distribution of a specific water-quality constituent. Geographic information for small basins throughout the study area is then used to subdivide the area into relatively homogeneous environmental water-quality zones. For each zone, commonly used approaches are subsequently used to define its reference water quality and how its water quality responds to changes in land use. SPARTA is used to delineate zones of similar reference concentrations of total phosphorus and suspended sediment throughout the upper Midwestern part of the United States.  相似文献   
404.
Recent adoption of national rules for organic crop production have stimulated greater interest in meeting crop N needs using manures, composts, and other organic materials. This study was designed to provide data to support Extension recommendations for organic amendments. Specifically, our objectives were to (i) measure decomposition and N released from fresh and composted amendments and (ii) evaluate the performance of the model DECOMPOSITION, a relatively simple N mineralization/immobilization model, as a predictor of N availability. Amendment samples were aerobically incubated in moist soil in the laboratory at 22 degrees C for 70 d to determine decomposition and plant-available nitrogen (PAN) (n = 44), and they were applied preplant to a sweet corn crop to determine PAN via fertilizer N equivalency (n = 37). Well-composted materials (n = 14) had a single decomposition rate, averaging 0.003 d(-1). For uncomposted materials, decomposition was rapid (>0.01 d(-1)) for the first 10 to 30 d. The laboratory incubation and the full-season PAN determination in the field gave similar estimates of PAN across amendments. The linear regression equation for lab PAN vs. field PAN had a slope not different from one and a y-intercept not different than zero. Much of the PAN released from amendments was recovered in the first 30 d. Field and laboratory measurements of PAN were strongly related to PAN estimated by DECOMPOSITION (r(2) > 0.7). Modeled PAN values were typically higher than observed PAN, particularly for amendments exhibiting high initial NH(4)-N concentrations or rapid decomposition. Based on our findings, we recommend that guidance publications for manure and compost utilization include short-term (28-d) decomposition and PAN estimates that can be useful to both modelers and growers.  相似文献   
405.
Micro-X-ray fluorescence (micro-XRF) microprobe analysis and micro-X-ray absorption near-edge structure (micro-XANES) spectroscopy were employed to identify Fe and Mn phases and their association with selected metals in two biosolids (limed composted [LC] and Nu-Earth) before and after treatment to remove organic carbon (OC). Spatial correlations derived from elemental mapping of XRF images showed strong correlations between Fe and Cd, Cr, Pb, or Zn (r2= 0.65-0.92) before and after removal of most of the OC. The strong correlation between Fe and Cu that was present in intact samples disappeared after OC removal, suggesting that Cu was associated with OC coatings that may have been present on Fe compounds. Except for Fe and Cr, the spatial correlations of metals with Mn were improved after treatment to remove OC, indicating that the treatment may have altered more than the OC in the system. The Fe micro-XANES spectra of the intact biosolids sample showed that every point had varying mixtures of Fe(II and III) species and no two points were identical. The lack of uniformity in Fe species in the biosolids sample illustrates the complexity of the materials and the difficulty of studying biosolids using conventional analytical tools or chemical extraction techniques. Still, these microscopic observations provide independent information supporting the previous laboratory and field hypothesis that Fe compounds play a major role in retention of environmentally important trace elements in biosolids. This could be due to co-precipitation of the metals with Fe, adsorption of metals by Fe compounds, or a combination of both mechanisms.  相似文献   
406.
Forage-based livestock systems have been implicated as major contributors to deteriorating water quality, particularly for phosphorus (P) from commercial fertilizers and manures affecting surface and ground water quality. Little information exists regarding possible magnitudes of nutrient losses from pastures that are managed for both grazing and hay production and how these might impact adjacent bodies of water. We examined the changes that have occurred in soil fertility levels of rhizoma peanut (Arachis glabrata Benth.)-based beef cattle pastures (n = 4) in Florida from 1988 to 2002. These pastures were managed for grazing in spring followed by haying in late summer and were fertilized annually with P (39 kg P2O5 ha(-1)) and K (68 kg K2O ha(-1)). Additionally, we investigated trends in water quality parameters and trophic state index (TSI) of lakes (n = 3) associated with beef cattle operations from 1993 to 2002. Overall, there was no spatial or temporal buildup of soil P and other crop nutrients despite the annual application of fertilizers and daily in-field loading of animal waste. In fact, soil fertility levels showed a declining trend for crop nutrient levels, especially soil P (y = 146.57 - 8.14 x year; r2= 0.75), even though the fields had a history of P fertilization and the cattle were rotated into the legume fields. Our results indicate that when nutrients are not applied in excess, cow-calf systems are slight exporters of P, K, Ca, and Mg through removal of cut hay. Water quality in lakes associated with cattle production was "good" (30-46 TSI) based on the Florida Water Quality Standard. These findings indicate that properly managed livestock operations may not be major contributors to excess loads of nutrients (especially P) in surface water.  相似文献   
407.
The problems of overproduction within the European Union countries and the environmental impact of agriculture have lead to the introduction of schemes that aim to reduce both. Beef (Bos taurus) production forms a large component of the Irish agricultural industry and accounts for more than one quarter of agricultural economic output. Recently, the European CAP (Common Agricultural Policy) has been re-evaluated to include supplementary measures that encompass the environmental role of agriculture rather than just the production role. A life cycle assessment (LCA) method was adopted to estimate emissions per kilogram of CO2 equivalent per kilogram of live weight (LW) leaving the farm gate per annum (kg CO2 kg(-1) LW yr(-1)) and per hectare (kg CO2 ha(-1) yr(-1)). Fifteen units engaged in suckler-beef production (five conventional, five in an Irish agri-environmental scheme, and five organic units) were evaluated for emissions per unit product and area. The average emissions from the conventional units were 13.0 kg CO2 kg(-1) LW yr(-1), from the agri-environmental scheme units 12.2 kg CO2 kg(-1) LW yr(-1), and from the organic units 11.1 kg CO2 kg LW yr(-1). The average emissions per unit area from the conventional units was 5346 kg CO2 ha(-1) yr(-1), from the agri-environmental scheme units 4372 kg CO2 ha(-1) yr(-1), and from the organic units 2302 kg CO2 ha(-1) yr(-1). Results indicated that moving toward extensive production could reduce emissions per unit product and area but live weight production per hectare would be reduced.  相似文献   
408.
The objective of this study was to quantify C and N mineralization rates from a range of organic amendments that differed in their total C and N contents and C quality, to gain a better understanding of their influence on the soil N cycle. A pelletized poultry manure (PP), two green waste-based composts (GWCa, GWCb), a straw-based compost (SBC), and a vermi-cast (VER) were incubated in a coarse-textured soil at 15 degrees C for 142 d. The C quality of each amendment was determined by chemical analysis and by 13C nuclear magnetic resonance (NMR). Carbon dioxide (CO2-C) evolution was determined using alkali traps. Gross N mineralization rates were calculated by 15N isotopic pool dilution. The CO2-C evolution rates and gross N mineralization rates were generally higher in amended soils than in the control soil. With the exception of GWCb all amendments released inorganic N at concentrations that would be high enough to warrant a reduction in inorganic N fertilizer application rates. The amount of N released from PP was high indicating that application rates should be reduced, or alternative amendments used, to minimize leaching losses in regions where ground water quality is of concern. There was a highly significant relationship between CO2-C evolution and gross N mineralization (R2= 0.95). Some of the chemically determined C quality parameters had significant relationships (p < 0.05) with both the cumulative amounts of C and N evolved. However, we found no significant relationships between 13C NMR spectral groupings, or their ratios, and either the CO2-C evolved or gross N mineralized from the amendments.  相似文献   
409.
Influence of soil properties and aging on Cu partitioning and toxicity was assessed on 10 artificial soils constituted using a statistical design considering pH (5.5 and 7.5), organic matter (1-30% [w/w]), and clay content (5-35% [w/w]). Total Cu as well as water-, CaCl2-, and diethylene triamine pentaacetic acid (DTPA)-extracted Cu fractions were determined for each soil mixture. Ecotoxic effect was assessed by determining growth inhibition of barley (Hordeum vulgare L.) and compost worm (Eisenia fetida) mortality. Analyses were repeated after a 16-wk aging period of the soils at pH 7.5 (8 x 2-wk wetting and drying cycle). Results indicated that pH was the main factor controlling Cu partitioning, ahead of organic matter and clay content. Calcium chloride (0.5 M)-extracted Cu fractions showed the best correlation with toxic responses (r = 0.55-0.66; p < 0.05), while total and DTPA-extracted Cu concentrations could not explain differences in toxicity. Direct regressions between toxicity and soil properties (pH, organic matter, and clay content) provided better explanation of variance: r2= 0.50 (p = 0.00006) for compost worm mortality, r2= 0.77 (p < 0.00001) for barley shoot inhibition, and r2= 0.92 (p < 0.00001) for barley root inhibition. Copper toxicity was mainly influenced by pH and, to a lesser extent, by organic matter and clay content. Aging in organic soils revealed a slight reduction in ecotoxicity while an increase was observed in soils with low organic matter content. Further investigation using longer aging periods would be necessary to assess the significance of this observation.  相似文献   
410.
Different livestock feeds manipulations have been reported to reduce the total P concentration in manure. Information on the influence of these dietary manipulation strategies on the forms of P in manure is, however, limited. This study was, therefore, conducted to investigate the effect of diet manipulation through feed micronization and enzyme supplementation on the forms of P in swine manure. Eight growing pigs were fed four diets: barley-raw pea (BRP), barley-micronized pea (BMP), barley-raw pea with enzyme (BRPE), and barley-micronized pea with enzyme (BMPE) in a 4 x 4 Latin square design. Because we are interested in the effect of enzyme cocktail and pea micronization on manure P, we did not reduce the non-phytate P with enzyme addition in this study. The fecal material and urine were collected and analyzed for total P. Fecal material was fractionated to determine the total P in H2O-, NaHCO3-, NaOH-, and HCl-extractable fractions. The total P in the residual fractions was also determined. About 98% of the total P excreted by the pigs was found in the fecal material. Inclusion of micronized pea in pig diet did not have any significant effect (p > 0.1) on either the total P or the different P fractions in the manure. The labile P (the sum of H2O-P and NaHCO3-P) was significantly reduced (p < 0.05) by the addition of enzyme to swine diets. Pigs fed the BRPE and BMPE had 14 and 18% lower labile P, respectively, compared with pigs fed the BRP. Enzyme addition to pig diets reduced not only the total P in manure, but also the labile P fraction, which is of great environmental concern. Thus, the potential of P loss to runoff and the subsequent eutrophication can be reduced by enzyme addition to pig diets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号