首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
污染及防治   48篇
评价与监测   8篇
社会与环境   2篇
  2022年   1篇
  2020年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   9篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   5篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2000年   2篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1980年   1篇
排序方式: 共有58条查询结果,搜索用时 124 毫秒
41.
It is now well understood that air pollution produces significant adverse health effects in the general public and over the past 60 years, there have been on-going efforts to reduce the emitted pollutants and their resulting health effects. There are now shifting patterns of industrialization with many heavily polluting industries moving from developed countries with increasingly stringent air quality standards to the developing world. However, even in decreasing concentrations of pollutants, health effects remain important possibly as a result of changes in the nature of the pollutants as new chemicals are produced and as other causes of mortality and morbidity are reduced. In addition, there is now the potential for deliberate introduction of toxic air pollutants by local armed conflicts and terrorists. Thus, there are new challenges to understand the role of the atmospheric environment on public health in this time of changing economic and demographic conditions overlaid with the willingness to indirectly attack governments and other established entities through direct attacks on the general public.  相似文献   
42.
The seasonal fluctuations of antimony, arsenic, indium, manganese and vanadium have been measured in airborne particulate matter from 1982-1987 at Alert in the Canadian high Arctic. Calculations of enrichment factors have shown that arsenic and antimony are very enriched in the wintertime aerosol. While wintertime ratios of non-crustal manganese/non-crustal vanadium were in agreement with previously published work, summertime ratios often resulted in negative values. A re-evaluation of the crustal Mn/V ratio was undertaken by looking at this ratio during the summertime and assuming that nearly all the airborne particulate matter was derived from crustal matter. Principal Source Contribution Function Analyses were performed for arsenic, indium and manganese. The results suggested that these important regional signatures can now be characterized as coming from distinct European and Asian areas. This improvement in area resolution is much more satisfactory than citing the usual attribution of an overall Eurasian source.  相似文献   
43.
44.
The bilinear receptor model positive matrix factorization (PMF) was used to apportion particulate matter with an aerodynamic diameter of 1–10 μm (PM1–10) sources in a village, B?ezno, situated in an industrial region of northern Bohemia in Central Europe. The receptor model analyzed the data sets of 90- and 60-min integrations of PM1–10 mass concentrations and elemental composition for 27 elements. The 14-day sampling campaigns were conducted in the village in summer 2008 and winter 2010. Also, to ensure seasonal and regional representativeness of the data sets recorded in the village, the spatial-temporal variability of the 24-hr PM10 and PM1–10 within 2008–2010 in winter and summer across the multiple sites was evaluated. There were statistically significant interseasonal differences of the 24-hr PM data, but not intrasummer or intrawinter differences of the 24-hr PM1–10 data across the multiple sites. PMF resolved seven sources of PM1–10. They were high-temperature coal combustion; combustion in local heating boilers; marine aerosol; mineral dust; primary biological/wood burning; road dust, car brakes; and gypsum. The main summer factors were assigned to mineral dust (38.2%) and primary biological/wood burning (33.1%). In winter, combustion factors dominated (80%) contribution to PM1–10. The conditional probability function (CPF) helped to identified local sources of PM1–10. The source of marine aerosol from the North Sea and English Channel was indicated by the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT).

Implications: This is the first application of PMF to highly time/size resolved PM data in Czech Republic. The coarse aerosol fraction, PM1–10, was chosen with regard to industrial character of the region, sampling site near the coal strip mine and coal power stations. Contrary to expectation, source apportionment did not show dominance of emissions from the coal strip mine. The results will enable local authorities and state bodies responsible for air quality assessment to focus on sources most responsible for air pollution in this industrial region.

Supplemental Materials:?Supplemental materials are available for this paper. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for (1) details of measurement campaigns; (2) CPF for each of the sources contributing to PM1–10; (3) factors contribution to PM1–10 resolved by PMF; (4) diurnal pattern of road dust, car brake factor in summer and winter; (5) trajectories during the marine aerosol episode in winter 2010; and (6) temporal temperature, concentration, and wind speed relationships during the summer 2008 campaign and winter 2010 campaign.  相似文献   
45.
Measurement of carcinogenic Cr(VI) in ambient PM is challenging due to potential errors associated with conversion between Cr(VI) (a carcinogen) and Cr(III) (an essential nutrient). Cr(III) conversion is a particular concern due to its >80% atomic abundance in total Cr. U.S. Environmental Protection Agency (EPA) method 6800 that uses water-soluble isotope spikes can be used to correct the interconversion. However, whether the enriched Cr(III) isotope spikes can adequately mimic the Cr(III) species originally in ambient PM is unknown. This study examined the water solubility of Cr(III) in ambient PM and discussed its influence on Cr(VI) measurement. Ambient PM10 samples were collected on Teflon filters at four sites in New Jersey that may have different Cr emission sources. The samples were ultrasonically extracted with 5 mL DI-H2O (pH 5.7) at room temperature for 40 min, and then analyzed by ion chromatography–inductively coupled plasma mass spectrometry (IC-ICPMS). Cr(III) was below detection limit (0.06 ng/m3) for all samples, suggesting water-soluble Cr(III) species, such as CrCl3, Cr(NO3)3, and amorphous Cr(OH)3, in the ambient PM were negligible. Therefore, the enriched 50Cr(III) isotope spike (in the form of Cr(NO3)3) could not mimic the original ambient Cr(III). Only the conversion of 53Cr(VI) (in the form of K2CrO4) was taken into account when correcting the interconversion. We then used NaHCO3-pretreated MCE filters (prespiked with enriched isotope species) to measure Cr(VI) in the ambient PM10. The samples were ultrasonically extracted at 60 C pH 9 solutions for 40 min followed by IC-ICPMS analysis. Due to the correction of Cr(VI) reduction, the Cr(VI) concentrations determined by EPA method 6800, 0.26 ± 0.16 (summer) and 0.16 ± 0.11(winter) ng/m3 (n = 64), were significantly greater than those by the external standard curve, 0.21 ± 0.17 (summer) and 0.10 ± 0.07 (winter) ng/m3 (n = 56) (p < 0.01, Student’s t-test). Our study revealed that appropriate application of EPA method 6800 is important because it only applies to soluble fraction of Cr species in ambient PM.
ImplicationsAccurate measurement of carcinogenic Cr(VI) in ambient PM is challenging due to conversion between Cr(VI) (a human carcinogen) and Cr(III) (a human essential nutrient). The conversion of Cr(III) is of particular concern due to its dominant presence in total Cr (>80%). This study examined the water solubility of Cr(III) in ambient PM that was collected at four locations in New Jersey. Then we discussed the influence of Cr(III) solubility on the application of EPA method 6800, which utilizes enriched isotope spikes to correct the interconversion. Our results suggested that appropriate application of EPA method 6800 is important because it only applies to soluble fraction of Cr species.  相似文献   
46.
Airborne particle and gas samples were collected approx every 12 days from April 2002 to June 2006 at the Sterling Nature Center located near the southeast corner of Lake Ontario. These samples were analyzed for polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDE). Clausius-Clapeyron (C–C) regression analyses of PCBs and DDE yielded moderate correlations (r2 = 0.54, p < 0.001; r2 = 0.74, p < 0.001, respectively) indicating that much of the variations in concentrations can be explained by temperature. Back trajectory analysis indicated that the most important factors driving unusually high PCB partial pressures relative to those predicted by the C–C regression were slow wind speeds and winds generally from the southwest. This combination, which occurred frequently in 2004, increased contact of the air with contaminated upwind surfaces with minimum dilution. Hybrid receptor modeling (Potential Source Contribution Function (PSCF)) results for the total PCBs identified the midwestern US region that contains the urban areas of southern Indiana (IN), southwestern Ohio (OH), and northern Kentucky (KY) having the highest PSCF values. In general urban areas like Chicago (IL), Detroit (MI), Cleveland (OH), St. Louis (MO), and Nashville (TN) also had significant possibilities. In contrast, the PSCF modeling for DDE identified northern Alabama as the area with the highest probability where DDT was applied to cotton fields.  相似文献   
47.
Three mercury (Hg) species (gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and fine particulate-bound mercury (PBM2.5)) were measured in the stack of a small scale wood combustion chamber at 400 °C, in the stack of an advanced wood boiler, and in two areas influenced by wood combustion. The low temperature process (lab-scale) emitted mostly GEM (∼99% when burning wood pellets and ∼95% when burning unprocessed wood). The high temperature wood boiler emitted a greater proportion of oxidized Hg (approximately 65%) than the low temperature system. In field measurements, mean PBM2.5 concentrations at the rural and urban sites in winter were statistically significantly higher than in warmer seasons and were well correlated with Delta-C concentrations, a wood combustion indictor measured by an aethalometer (UV-absorbable carbon minus black carbon). Overall the results suggest that wood combustion may be an important source of oxidized mercury (mostly in the particulate phase) in northern climates in winter.  相似文献   
48.
Daily PM2.5 samples, Hg0 and speciated polycyclic aromatic hydrocarbon (PAH) were simultaneously collected at Potsdam and Stockton site in NY during the summers of 2000 and 2001. Samples for determination of the mass concentration and chemical composition of the PM2.5 were obtained with a speciation network PM2.5 sampler. Chemical composition including trace elemental composition, water-soluble ions, and elemental carbon were analyzed. Elemental mercury and PAHs were sampled separately. Daily PM2.5 concentrations ranged from 0.47 to 53.7 microg m(-3) at the Potsdam site, and from 0.82 to 47.23 microg m(-3) at the Stockton site with large daily differences between the two sites. Potsdam consistently had lower mass values than Stockton. The greatest contributors to the PM2.5 mass (generally >0.1 microg/m(3)) were sulfate, nitrate, ammonium, and BC at both sites. Seventeen PAHs were identified at each site in 2000 and the average total concentrations were 3.2 ng/m(3) and 2.9 ng/m(3) at the Potsdam and Stockton sites, respectively. The mean vapor phase mercury concentration at the Potsdam site (2.4 +/-1.2 ng m(-3), n=93) was higher than that at the Stockton site (1.2 +/- 1.0 ng m(-3), n=60) in 2000, whereas in 2001, the average concentrations were 1.1 ng m(-3) and 1.6 ng m(-3) at the Potsdam and Stockton sites, respectively. In general, vapor phase mercury concentrations increased with increasing ambient temperature at the Stockton site in 2000. These differences in values between 2000 and 2001 can be largely explained by distinct differences in the meteorological regimes that dominated in the different years.  相似文献   
49.
Chemical composition data for fine and coarse particles collected in Phoenix, AZ, were analyzed using positive matrix factorization (PMF). The objective was to identify the possible aerosol sources at the sampling site. PMF uses estimates of the error in the data to provide optimum data point scaling and permits a better treatment of missing and below-detection-limit values. It also applies nonnegativity constraints to the factors. Two sets of fine particle samples were collected by different samplers. Each of the resulting fine particle data sets was analyzed separately. For each fine particle data set, eight factors were obtained, identified as (1) biomass burning characterized by high concentrations of organic carbon (OC), elemental carbon (EC), and K; (2) wood burning with high concentrations of Na, K, OC, and EC; (3) motor vehicles with high concentrations of OC and EC; (4) nonferrous smelting process characterized by Cu, Zn, As, and Pb; (5) heavy-duty diesel characterized by high EC, OC, and Mn; (6) sea-salt factor dominated by Na and Cl; (7) soil with high values for Al, Si, Ca, Ti, and Fe; and (8) secondary aerosol with SO4(-2) and OC that may represent coal-fired power plant emissions. For the coarse particle samples, a five-factor model gave source profiles that are attributed to be (1) sea salt, (2) soil, (3) Fe source/motor vehicle, (4) construction (high Ca), and (5) coal-fired power plant. Regression of the PM mass against the factor scores was performed to estimate the mass contributions of the resolved sources. The major sources for the fine particles were motor vehicles, vegetation burning factors (biomass and wood burning), and coal-fired power plants. These sources contributed most of the fine aerosol mass by emitting carbonaceous particles, and they have higher contributions in winter. For the coarse particles, the major source contributions were soil and construction (high Ca). These sources also peaked in winter.  相似文献   
50.
Source apportionment with site specific source profiles   总被引:1,自引:0,他引:1  
A receptor modeling study was performed to identify and apportion the sources of PM10 mass in Granite City, Illinois, an area of historic TSP nonattainment. Samples of the ambient aerosol were collected using a dichotomous sampler. Each sample was analyzed by x-ray fluorescence and instrumental neutron activation analysis. To begin the study, a factor analysis was performed. Two different chemical mass balance (CMB) analyses were then made. The first CMB analysis used only source profiles available from the literature while the second included twelve source profiles developed from dust samples collected in Granite City. Both CMB analyses used 20 of the 33 analyzed elements since many of the source profiles in the literature did not include the other thirteen elements. The results from both sets of CMB analyses were grouped by the predominate wind direction at the site during the time each sample was taken to identify the direction of each source relative to the sampler. It was found that regional sources were the primary contributors to the fine fraction while the coarse fraction was composed of material from local industries. These sources were generally the ones identified during the Regional Air Pollution Study previously conducted in the area. However, the emission profiles from these sources were observed to have changed between the studies. It was also found that the use of the locally generated profiles greatly improved the results of the CMB analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号