首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10735篇
  免费   157篇
  国内免费   274篇
安全科学   303篇
废物处理   496篇
环保管理   1656篇
综合类   1593篇
基础理论   2607篇
环境理论   2篇
污染及防治   2619篇
评价与监测   770篇
社会与环境   1053篇
灾害及防治   67篇
  2023年   74篇
  2022年   151篇
  2021年   131篇
  2020年   96篇
  2019年   133篇
  2018年   198篇
  2017年   208篇
  2016年   307篇
  2015年   217篇
  2014年   321篇
  2013年   980篇
  2012年   379篇
  2011年   526篇
  2010年   425篇
  2009年   465篇
  2008年   531篇
  2007年   535篇
  2006年   423篇
  2005年   366篇
  2004年   392篇
  2003年   377篇
  2002年   346篇
  2001年   390篇
  2000年   254篇
  1999年   157篇
  1998年   124篇
  1997年   121篇
  1996年   151篇
  1995年   174篇
  1994年   133篇
  1993年   120篇
  1992年   112篇
  1991年   119篇
  1990年   114篇
  1989年   94篇
  1988年   96篇
  1987年   100篇
  1986年   87篇
  1985年   84篇
  1984年   93篇
  1983年   84篇
  1982年   87篇
  1981年   89篇
  1980年   65篇
  1979年   64篇
  1978年   46篇
  1977年   47篇
  1976年   45篇
  1973年   49篇
  1972年   60篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
601.
In this study, we tested the effects of dietary nickel on the activity of glutathione S-transferase (GST), esterases, phenoloxidase, and encapsulation in the haemolymph of larvae of the greater wax moth Galleria mellonella. We also explored the effects of dietary nickel on larval resistance to infection by the fungus Beauveria bassiana. Larvae fed a low dose of nickel (10 μg g−1) had significantly higher GST, phenoloxidase activity and encapsulation responses than controls fed on a nickel-free diet. We also found that larvae fed a sublethal dose of nickel (50 μg g−1) had increased GST, esterase activity and encapsulation rates but decreased phenoloxidase activity. Although, a sublethal dose of dietary nickel enhanced innate immunity, we found that this reduced resistance against the real pathogen. Our results suggest that enhanced immunity and detoxification enzyme activity of insects may not be beneficial to resistance to fungal infection. It appears that there is a trade off between different resistance mechanisms in insects under different metal treatments.  相似文献   
602.
The purpose of this paper is to study the redistribution of chemical species (OH, HO2, H2O2, HNO3 and H2SO4) over West Africa, where the cloud cover is ubiquitously present, and where deep convection often develops. In this area, because of these cloud systems, chemical species are redistributed by the ascending and descending flow, or leached if they are soluble. So, we carry out a mesoscale study using the Regional Atmospheric Modelling System (RAMS) coupled to a code of gas and aqueous chemistry (RAMS_Chemistry). It takes into account all processes under mesh. We examine several cases following the period (November and July), with inputs emissions (anthropogenic, biogenic and biomass burning). The radicals OH and HO2 are an indicator of possibilities for chemical activity. They characterize the oxidizing power of the atmosphere and are very strong oxidants. The acids HNO3 and H2SO4 are interesting in their transformation into nitrates and sulfates in precipitation. In November, when photochemistry is active during an event of biomass burning, concentrations of chemical species are higher than those of November in the absence of biomass burning. The concentrations of nitric acid double and sulfuric acid increases 70 times. In addition, the concentrations are even lower in July if there is a deep convection. Compared to measures of the African Monsoon Multidisciplinary Analysis (AMMA), the results and observations of radicals OH and HO2 are the same order of magnitude. Emissions from biomass burning increase the concentrations of acid and peroxide, and a deep convection cloud allows the solubility and the washing out of species, reducing their concentration. Rainfalls play a major role in solubility and washing out acids, peroxides and radicals in this region.  相似文献   
603.
Effects of C60 nanoparticles (nominal concentrations 0, 15.4 and 154 mg/kg soil) on mortality, growth and reproduction of Lumbricus rubellus earthworms were assessed. C60 exposure had a significant effect on cocoon production, juvenile growth rate and mortality. These endpoints were used to model effects on the population level. This demonstrated reduced population growth rate with increasing C60 concentrations. Furthermore, a shift in stage structure was shown for C60 exposed populations, i.e. a larger proportion of juveniles. This result implies that the lower juvenile growth rate due to exposure to C60 resulted in a larger proportion of juveniles, despite increased mortality among juveniles. Overall, this study indicates that C60 exposure may seriously affect earthworm populations. Furthermore, it was demonstrated that juveniles were more sensitive to C60 exposure than adults.  相似文献   
604.
Column experiments were conducted for examining the effectiveness of the cationic hydrogel on Cr(VI) removal from groundwater and soil. For in-situ groundwater remediation, the effects of background anions, humic acid (HA) and pH were studied. Cr(VI) has a higher preference for being adsorbed onto the cationic hydrogel than sulphate, bicarbonate ions and HA. However, the adsorbed HA reduced the Cr(VI) removal capacity of the cationic hydrogel, especially after regeneration of the adsorbents, probably due to the blockage of adsorption sites. The Cr(VI) removal was slightly influenced by the groundwater pH that could be attributed to Cr(VI) speciation. The 6-cycle regeneration and reusability study shows that the effectiveness of the cationic hydrogel remained almost unchanged. On average, 93% of the adsorbed Cr(VI) was recovered in each cycle and concentrated Cr(VI) solution was obtained after regeneration. For in-situ soil remediation, the flushing water pH had an insignificant effect on the release of Cr(VI) from the soils. Multiple-pulse flushing increased the removal of Cr(VI) from the soils. In contrast, more flushing water and longer operation may be required to achieve the same removal level by continuous flushing.  相似文献   
605.
A method exists to predict heavy-duty vehicle fuel economy and emissions over an "unseen" cycle or during unseen on-road activity on the basis of fuel consumption and emissions data from measured chassis dynamometer test cycles and properties (statistical parameters) of those cycles. No regression is required for the method, which relies solely on the linear association of vehicle performance with cycle properties. This method has been advanced and examined using previously published heavy-duty truck data gathered using the West Virginia University heavy-duty chassis dynamometer with the trucks exercised over limited test cycles. In this study, data were available from a Washington Metropolitan Area Transit Authority emission testing program conducted in 2006. Chassis dynamometer data from two conventional diesel buses, two compressed natural gas buses, and one hybrid diesel bus were evaluated using an expanded driving cycle set of 16 or 17 different driving cycles. Cycle properties and vehicle fuel consumption measurements from three baseline cycles were selected to generate a linear model and then to predict unseen fuel consumption over the remaining 13 or 14 cycles. Average velocity, average positive acceleration, and number of stops per distance were found to be the desired cycle properties for use in the model. The methodology allowed for the prediction of fuel consumption with an average error of 8.5% from vehicles operating on a diverse set of chassis dynamometer cycles on the basis of relatively few experimental measurements. It was found that the data used for prediction should be acquired from a set that must include an idle cycle along with a relatively slow transient cycle and a relatively high speed cycle. The method was also applied to oxides of nitrogen prediction and was found to have less predictive capability than for fuel consumption with an average error of 20.4%.  相似文献   
606.
Heavy-duty vehicles (HDVs) present a growing energy and environmental concern worldwide. These vehicles rely almost entirely on diesel fuel for propulsion and create problems associated with local pollution, climate change, and energy security. Given these problems and the expected global expansion of HDVs in transportation sectors, industry and governments are pursuing biofuels and natural gas as potential alternative fuels for HDVs. Using recent lifecycle datasets, this paper evaluates the energy and emissions impacts of these fuels in the HDV sector by conducting a total fuel-cycle (TFC) analysis for Class 8 HDVs for six fuel pathways: (1) petroleum to ultra low sulfur diesel; (2) petroleum and soyoil to biodiesel (methyl soy ester); (3) petroleum, ethanol, and oxygenate to e-diesel; (4) petroleum and natural gas to Fischer-Tropsch diesel; (5) natural gas to compressed natural gas; and (6) natural gas to liquefied natural gas. TFC emissions are evaluated for three greenhouse gases (GHGs) (carbon dioxide, nitrous oxide, and methane) and five other pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter, and sulfur oxides), along with estimates of total energy and petroleum consumption associated with each of the six fuel pathways. Results show definite advantages with biodiesel and compressed natural gas for most pollutants, negligible benefits for e-diesel, and increased GHG emissions for liquefied natural gas and Fischer-Tropsch diesel (from natural gas).  相似文献   
607.
608.
Tracer gas was released upwind of a two-compartment complex shaped building under unstable atmospheric conditions. The mean wind direction was normal to or at 45° to the long face of the building. The general patterns of concentration distribution on the building external walls and inside the building were analysed and the influence of natural and mechanical ventilation on indoor concentration distributions was discussed. Mean concentration levels, as well as the concentration fluctuation intensity, were higher on the windward walls of the building, although concentration levels varied along each wall. Concentration fluctuations measured inside the building were lower than those measured outside. Inside the two compartments of the building, the time series of concentrations had a similar general behaviour; however, gas concentrations took approximately 1.5 times longer to reach the mean maximum concentration value at the downwind compartment 02 while they also decreased more rapidly in the upwind compartment 01 after the source was turned off. The highest indoor concentration and concentration fluctuation values were observed at the detectors located close to the windward walls, especially when the building windows were open. Experiments with and without natural ventilation suggested that infiltration and exfiltration of contaminants is much faster when the building windows are open, resulting to higher indoor concentration levels. Furthermore, mechanical ventilation tends to homogenize concentrations and suppress concentration fluctuations, leading to lower maximum concentration values.  相似文献   
609.
Anaerobic degradation of waste involves different classes of microorganisms, and there are different types of interactions among them for substrates, terminal electron acceptors, and so on. A mathematical model is developed based on the mass balance of different substrates, products, and microbes present in the system to study the interaction between methanogens and sulfate-reducing bacteria (SRB). The performance of major microbial consortia present in the system, such as propionate-utilizing acetogens, butyrate-utilizing acetogens, acetoclastic methanogens, hydrogen-utilizing methanogens, and SRB were considered and analyzed in the model. Different substrates consumed and products formed during the process also were considered in the model. The experimental observations and model predictions showed very good prediction capabilities of the model. Model prediction was validated statistically. It was observed that the model-predicted values matched the experimental data very closely, with an average error of 3.9%.  相似文献   
610.
Activated sludge modeling technology is maturing; however, currently, there exists a great need to increase its use in daily engineering practice worldwide. A good way for building the capacities of the practitioners is to promote good modeling practices and standardize the protocols. In this study, a systematic procedure was proposed to calibrate the Activated Sludge Model No. 1 (ASM1) at a large wastewater treatment plant, by which the model adequately predicted the quality of the effluent and the sludge quantities. A hydraulics model was set up and validated through a tracer test. The Vesilind settling constants were measured and combined with the default value of the flocculent zone settling parameter, to calibrate the clarifiers. A virtual anoxic tank was installed in the return activated sludge to mimic the denitrification occurring in the settlers. In ASM1, the calibrated parameters were only two influent chemical oxygen demand fractions and one kinetic constant (oxygen half-saturation coefficient).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号