Microbial degradation-induced changes in the characteristics of dissolved organic matter (DOM), and the subsequent effects on phenanthrene-DOM interactions were investigated based on the microbial incubation of DOM collected from four different sources for 28 d. Partially biodegraded DOM presented higher specific UV absorbance (SUVA), lower protein-like fluorescence, higher humic-like fluorescence, lower aliphatic carbon fraction, and higher hydrophobic neutral fractions compared to the original DOM. Microbial changes in DOM led to an increase in the isotherm nonlinearity as well as the extent of phenanthrene binding. A negative relationship between SUVA and the Freundlich n values was established for the original and the biodegraded DOM, suggesting that aromatic condensed structures may play important roles in providing nonlinear strong binding sites irrespective of microbial degradation. In contrast, there were two separate slopes of the correlations between the percentage of hydrophobic acid (HoA) fraction and the n values for the original and the biodegraded DOM with a higher slope exhibited for the latter, implying that the microbial utilization of oxygen-containing structures in the HoA fractions may contribute to enhancing the associated isotherm nonlinearity. 相似文献
Elucidating the impact of heteroatoms in graphitic carbon nitrides (g-C3N4) is of utmost importance to rationalize materials. Hence, in this study, oxygen-doped g-C3N4 containing trace amounts of halogen in the structures for piezo-photosynthesis of hydrogen peroxides (H2O2) is fabricated. The findings reveal that oxygen atoms may be inserted into g-C3N4 in-plane structures, while halogen atoms tend to become intercalated between g-C3N4 layers. Furthermore, the presence of ammonium molten salts (NH4X) during the synthesis alters the concentration of mono and cluster vacancies of carbon and nitrogen in the materials, certifying by positron annihilation spectroscopy (PAS). These defective contributions will be meaningfully accelerate catalytic performance by providing trapping states. Additionally, the decomposition of generated H2O2 can produce highly oxidative hydroxyl radicals, inducing degradations on the catalyst's structures and unexpectedly decreasing catalytic outcomes. From the mechanistic view, different reduction and oxidation channels will be play a pivotal role in generating H2O2. Moreover, the influence of ultrasound and light is also carefully investigated in the work to gain more insights into how the catalysts are triggered to improve catalytic performance. Thus, this study highlights the importance of carefully characterizing structures of g-C3N4 to precisely understand the catalytic properties, benefiting catalytic design and development. 相似文献
This study was carried out to evaluate longevity of available organic materials used for sulfate-reducing bacteria (SRB) activity in vertical flow ponds (VFPs) to treat mine drainage in South Korea. Spent mushroom compost samples (SMC) were tested as substrates in VFPs and analyzed for total organic carbon in VFPs, and were collected to analyze total organic carbon (TOC), T-N, T-P, K, metals and residual cellulose to check the longevity assessment. Chemical analysis revealed that the average contents of Fe, Al and Mn in SMC of VFPs were 19,907, 32,137 and 434 mg/kg, respectively. The contents of Fe and Al in SMC of VFPs were much higher than those of the unused SMC (control), but to the contrary, those of Mn showed a reversed tendency. Average TOC content of the controls was 64.19% but in one of the VFP substrates was as low as 15.92%. This might be resulted from SRB consumed the available organic carbon in SMC as VFPs system aged. Contents of T-N in VFPs tended to decrease as VFPs aged. The residual cellulose ranged from 3.88 to 6.72% (g/g). There existed a negative relationship between residual cellulose contents and ages of VFPs. Assuming that SMC in all VFPs had similar compositions when the VFPs were initially established, trend analysis predicted that the amount of carbon source for SRB might be available for 12–15 years further, depending on VFPs.
Sorption of tungstate on boehmite(γ-Al OOH)is increased by co-sorption with Co~(2+)over the near-neutral p H range.Batch uptake experiments show up to a 3-fold increase in tungstate uptake over the range WO_4~(2-)=50–1000μmol/L compared to boehmite not treated with Co~(2+).Desorption experiments reveal a corresponding decrease in sorption reversibility for tungstate co-sorbed with Co~(2+).Reaction of boehmite with Co~(2+)results in the formation of Co Al layered double hydroxide(LDH),as confirmed by X-ray diffraction and X-ray absorption spectroscopy.Tungsten L_3-edge X-ray absorption near edge structure(XANES)reveals that W(VI)is octahedrally coordinated in all sorption samples,with polymeric tungstate species forming at higher tungstate concentrations.X-ray diffraction and X-ray absorption spectroscopy indicate that the mechanism for enhancement of tungstate uptake is the formation of surface complexes on boehmite at low tungstate concentrations,while exchange into the Co Al LDH becomes important at higher tungstate concentrations.The results provide a basis for developing strategies to enhance tungstate sorption and to limit its environmental mobility at near-neutral pH conditions. 相似文献
Journal of Material Cycles and Waste Management - The ilmenite-chloride process has used for the production of TiCl4 from the ilmenite (FeTiO3) ore, which produces cyclone dust containing mostly... 相似文献
Tracking the variation of the algogenic organic matter (AOM) released during the proliferation of green algae and subsequent treatment processes is crucial for constructing and optimizing control strategies. In this study, the potential of the spectroscopic tool was fully explored as a surrogate of AOM upon the cultivation of green algae and subsequent coagulation/flocculation (C/F) treatment processes using ZrCl4 and Al2(SO4)3. Fluorescence excitation emission matrix coupled with parallel factor analysis (EEM-PARAFAC) identified the presence of three independent fluorescent components in AOM, including protein-like (C1), fulvic-like (C2) and humic-like components (C3). Size exclusion chromatography (SEC) revealed that C1 in AOM was composed of large-sized proteins and aromatic amino acids. The individual components exhibited their unique characteristics with respect to the dynamic changes. C1 showed the highest correlation with AOM concentrations (R2?=?0.843) upon the C/F processes. C1 could also be suggested as an optical predictor for the formation of trihalomethanes upon the C/F processes. This study sheds a light for the potential application of the protein-like component (C1) as a practical surrogate to track the evolution of AOM in water treatment or wastewater reclamation systems involving Chlorella vulgaris green algae. 相似文献
Facultative anaerobic Shewanella sp. strain HN-41 was able to utilize selenite (Se(IV)) as a sole electron acceptor for respiration in anaerobic condition, resulting in reduction of Se(IV) and then precipitation of elemental Se nano-sized spherical particles, which were identified using energy-dispersive X-ray spectroscopy and X-ray absorption near-edge structure spectroscopy. When the effects on Se(IV) reduction to elemental Se were studied by varying incubation temperatures and dissolved oxygen contents, Se(IV) reduction occurred more actively with higher removal rate of Se(IV) in aqueous phase and well-shaped spherical Se(0) nanoparticles were formed from the incubations under N(2) (100%) or N(2):O(2) (80%:20%) at 30 degrees C with average diameter values of 181+/-40 nm and 164+/-24 nm, respectively, while relatively less amounts of irregular-shaped Se(0) nanoparticles were produced with negligible amount of Se(IV) reduction and removal under 100% of O(2). The Se particle size distributions based on scanning electron microscopy also showed a general tendency towards decreased Se particle size as oxygen content increased, whereas the particle size seemed uncorrelated to the change in the incubation temperature. These results also suggest that the size-controlled biological Se(0) nanospheres production may be achieved simply by changing the culture conditions. 相似文献
Real-time or near real-time in-situ monitoring of dissolved organic matter (DOM) composition in natural waters and engineered treatment systems provides critical information to water quality scientists and engineers, particularly when the monitoring techniques can provide some information about the chemical nature of DOM. The efficacy of various indices derived from rapid, low-cost spectroscopic and chromatographic techniques to discriminate DOM composition was tested for samples prepared from well-defined mixtures of purified Aldrich humic acid (PAHA) and Suwannee River fulvic acid (SRFA). Sensitivities of the discrimination indices were examined by comparing (1) the differences between measured values and those predicted based from mass balance and the end member characteristics, and (2) the linear correlations between index values and mass ratios of the DOM mixtures. Size exclusion chromatography (SEC) results revealed that the weight-average molecular weight (MW(w)) may be a useful approach for tracking DOM mixing processes, although the number-average molecular weight (MW(n)) may be better for distinguishing different DOM compositions. Specific ultraviolet absorbance measured at 254 nm (SUVA(254)) performed better as a discrimination index than did two previously recommended absorbance ratios, both in terms of making better predictions of intermediate compositions and in exhibiting a more linear correlation with PAHA mass ratio. Several well-defined peaks in the derivative absorption spectra (301 and 314 nm for the first derivative, 217 nm for the third derivative, and 211 and 224 nm for the fourth derivative) also were found to be promising potential DOM discrimination indices. Finally, a fluorescence ratio based on humic- versus fulvic-like fluorescence proved to be a superior DOM discrimination index for the two DOM end members studied here. In general, this study illustrates the evaluation process that should be followed to develop rapid, low-cost discrimination indices to monitor DOM compositions based on end member mixing analyses. 相似文献
This study was carried out to evaluate longevity of available organic materials used for sulfate-reducing bacteria (SRB) activity in vertical flow ponds (VFPs) to treat mine drainage in South Korea. Spent mushroom compost samples (SMC) were tested as substrates in VFPs and analyzed for total organic carbon in VFPs, and were collected to analyze total organic carbon (TOC), T-N, T-P, K, metals and residual cellulose to check the longevity assessment. Chemical analysis revealed that the average contents of Fe, Al and Mn in SMC of VFPs were 19,907, 32,137 and 434 mg/kg, respectively. The contents of Fe and Al in SMC of VFPs were much higher than those of the unused SMC (control), but to the contrary, those of Mn showed a reversed tendency. Average TOC content of the controls was 64.19% but in one of the VFP substrates was as low as 15.92%. This might be resulted from SRB consumed the available organic carbon in SMC as VFPs system aged. Contents of T-N in VFPs tended to decrease as VFPs aged. The residual cellulose ranged from 3.88 to 6.72% (g/g). There existed a negative relationship between residual cellulose contents and ages of VFPs. Assuming that SMC in all VFPs had similar compositions when the VFPs were initially established, trend analysis predicted that the amount of carbon source for SRB might be available for 12-15 years further, depending on VFPs. 相似文献