排序方式: 共有46条查询结果,搜索用时 0 毫秒
11.
Hong S Boutron CF Barbante C Do Hur S Lee K Gabrielli P Capodaglio G Ferrari CP Turetta C Petit JR Lipenkov VY 《Journal of environmental monitoring : JEM》2005,7(12):1326-1331
Lead (Pb), cadmium (Cd), copper (Cu) and zinc (Zn) have been measured by electrothermal atomic absorption spectrometry in various sections of the 3623 m deep ice core drilled at Vostok, in central East Antarctica. The sections were dated from 240 to 410 kyear BP (Marine Isotopic Stages (MIS) 7.5 to 11.3), which corresponds to the 3rd and 4th glacial-interglacial cycles before present. Concentrations are found to have varied greatly during this 170 kyear time period, with high concentration values during the coldest climatic stages such as MIS 8.4 and 10.2 and much lower concentration values during warmer periods, such as the interglacials MIS 7.5, 9.3 and 11.3. Rock and soil dust were the dominant sources for Pb, whatever the period, and for Zn and Cu and possibly Cd during cold climatic stages. The contribution from volcanic emissions was important for Cd during all periods and might have been significant for Cu and Zn during warm periods. 相似文献
12.
Microbial degradation of dissolved organic matter (DOM) and its influence on phenanthrene-DOM interactions 总被引:4,自引:0,他引:4
Microbial degradation-induced changes in the characteristics of dissolved organic matter (DOM), and the subsequent effects on phenanthrene-DOM interactions were investigated based on the microbial incubation of DOM collected from four different sources for 28 d. Partially biodegraded DOM presented higher specific UV absorbance (SUVA), lower protein-like fluorescence, higher humic-like fluorescence, lower aliphatic carbon fraction, and higher hydrophobic neutral fractions compared to the original DOM. Microbial changes in DOM led to an increase in the isotherm nonlinearity as well as the extent of phenanthrene binding. A negative relationship between SUVA and the Freundlich n values was established for the original and the biodegraded DOM, suggesting that aromatic condensed structures may play important roles in providing nonlinear strong binding sites irrespective of microbial degradation. In contrast, there were two separate slopes of the correlations between the percentage of hydrophobic acid (HoA) fraction and the n values for the original and the biodegraded DOM with a higher slope exhibited for the latter, implying that the microbial utilization of oxygen-containing structures in the HoA fractions may contribute to enhancing the associated isotherm nonlinearity. 相似文献
13.
Recovery of iron oxide and calcium chloride from an iron-rich chloride waste using calcium carbonate
Yang Hee Jung Yoon Seok Won Kim You Jin Park Hee Sun Huh Seok Hur Nam Hwi 《Journal of Material Cycles and Waste Management》2021,23(1):222-230
Journal of Material Cycles and Waste Management - The ilmenite-chloride process has used for the production of TiCl4 from the ilmenite (FeTiO3) ore, which produces cyclone dust containing mostly... 相似文献
14.
Sorption of tungstate on boehmite(γ-Al OOH)is increased by co-sorption with Co~(2+)over the near-neutral p H range.Batch uptake experiments show up to a 3-fold increase in tungstate uptake over the range WO_4~(2-)=50–1000μmol/L compared to boehmite not treated with Co~(2+).Desorption experiments reveal a corresponding decrease in sorption reversibility for tungstate co-sorbed with Co~(2+).Reaction of boehmite with Co~(2+)results in the formation of Co Al layered double hydroxide(LDH),as confirmed by X-ray diffraction and X-ray absorption spectroscopy.Tungsten L_3-edge X-ray absorption near edge structure(XANES)reveals that W(VI)is octahedrally coordinated in all sorption samples,with polymeric tungstate species forming at higher tungstate concentrations.X-ray diffraction and X-ray absorption spectroscopy indicate that the mechanism for enhancement of tungstate uptake is the formation of surface complexes on boehmite at low tungstate concentrations,while exchange into the Co Al LDH becomes important at higher tungstate concentrations.The results provide a basis for developing strategies to enhance tungstate sorption and to limit its environmental mobility at near-neutral pH conditions. 相似文献
15.
Cheong YW Hur W Yim GJ Ji SW Yang JE Baek HJ Shim YS 《Environmental geochemistry and health》2012,34(Z1):115-121
This study was carried out to evaluate longevity of available organic materials used for sulfate-reducing bacteria (SRB) activity in vertical flow ponds (VFPs) to treat mine drainage in South Korea. Spent mushroom compost samples (SMC) were tested as substrates in VFPs and analyzed for total organic carbon in VFPs, and were collected to analyze total organic carbon (TOC), T-N, T-P, K, metals and residual cellulose to check the longevity assessment. Chemical analysis revealed that the average contents of Fe, Al and Mn in SMC of VFPs were 19,907, 32,137 and 434 mg/kg, respectively. The contents of Fe and Al in SMC of VFPs were much higher than those of the unused SMC (control), but to the contrary, those of Mn showed a reversed tendency. Average TOC content of the controls was 64.19% but in one of the VFP substrates was as low as 15.92%. This might be resulted from SRB consumed the available organic carbon in SMC as VFPs system aged. Contents of T-N in VFPs tended to decrease as VFPs aged. The residual cellulose ranged from 3.88 to 6.72% (g/g). There existed a negative relationship between residual cellulose contents and ages of VFPs. Assuming that SMC in all VFPs had similar compositions when the VFPs were initially established, trend analysis predicted that the amount of carbon source for SRB might be available for 12-15 years further, depending on VFPs. 相似文献
16.
Facultative anaerobic Shewanella sp. strain HN-41 was able to utilize selenite (Se(IV)) as a sole electron acceptor for respiration in anaerobic condition, resulting in reduction of Se(IV) and then precipitation of elemental Se nano-sized spherical particles, which were identified using energy-dispersive X-ray spectroscopy and X-ray absorption near-edge structure spectroscopy. When the effects on Se(IV) reduction to elemental Se were studied by varying incubation temperatures and dissolved oxygen contents, Se(IV) reduction occurred more actively with higher removal rate of Se(IV) in aqueous phase and well-shaped spherical Se(0) nanoparticles were formed from the incubations under N(2) (100%) or N(2):O(2) (80%:20%) at 30 degrees C with average diameter values of 181+/-40 nm and 164+/-24 nm, respectively, while relatively less amounts of irregular-shaped Se(0) nanoparticles were produced with negligible amount of Se(IV) reduction and removal under 100% of O(2). The Se particle size distributions based on scanning electron microscopy also showed a general tendency towards decreased Se particle size as oxygen content increased, whereas the particle size seemed uncorrelated to the change in the incubation temperature. These results also suggest that the size-controlled biological Se(0) nanospheres production may be achieved simply by changing the culture conditions. 相似文献
17.
Jin Hur Hang Vo-Minh Nguyen Bo-Mi Lee 《Environmental science and pollution research international》2014,21(12):7489-7500
Different land uses of upstream catchments may affect the quantity and the quality of dissolved organic matter (DOM) in watersheds, but the influence may differ by season. In this study, we examined concentrations and selected spectroscopic properties of DOM and the propensity to form trihalomethanes (THMs) for 19 different middle-sized watersheds across the Han River basin in Korea. Sampling was conducted for non-storm events during pre-monsoon (May) and monsoon seasons (July). The anthropogenic land uses including agricultural and residential areas occupied 2.3 to 49.4 % of the upstream catchments of the watersheds. Non-aromatic, labile, and less condensed DOM structures were more abundant in the monsoon season. Parallel factor analysis (PARAFAC) modeling with fluorescence data demonstrated that a combination of three different fluorescence components could explain the seasonal and the spatial distributions of DOM characteristics. Terrestrial humic-like fluorescence was the most abundant component for all the DOM samples, while protein-like fluorescence became more pronounced for the monsoon season. THM concentrations did not differ between the two seasons. Observed seasonal differences in the concentrations and the characteristics of DOM suggested a greater contribution of groundwater to the streams in watersheds in the monsoon versus the pre-monsoon season. Significant correlations among anthropogenic land use, microbial humic-like fluorescence, and the propensity to form THMs were found only for the pre-monsoon season. Principal component analysis (PCA) demonstrated that, regardless of the season, anthropogenic land uses increased the concentrations of DOM and nutrients but that their effects on the DOM properties were not evident for the monsoon season. 相似文献
18.
Jin Hur Bo-Mi Lee Kwang-Soon Choi Booki Min 《Environmental science and pollution research international》2014,21(3):2230-2239
Changes in the characteristics of algae-derived organic matter (AOM) were examined upon the operation of a microbial fuel cell (MFC) using multiple analytical methods. Temporal variations in the UV absorption and fluorescence excitation–emission matrix of the AOM revealed that less condensed humic-like components and large-sized protein-like fluorescent compounds were preferentially decomposed over the period of electricity generation. They also showed that low UV-absorbing extracellular organic matters (EOM) were produced at the end of the operation. SEC chromatograms demonstrated that smaller-sized UV-absorbing components were initially decomposed, followed by the net production of EOM with an intermediate molecular weight. Fourier transform infrared (FT-IR) spectra showed that proteins and polysaccharides were the two most dominant structures of the AOM in the MFC. Two-dimensional correlation spectroscopy combined with FT-IR provided additional valuable information on the sequential changes of the AOM, which occurred in the order of proteins → acidic functional groups → polysaccharides → amino acids/proteins. 相似文献
19.
Dinitrotoluenes are widely used as solvents and are intermediates in the synthesis of dyes, explosives, and pesticides. Environmental concerns regarding DNTs have increased due to their widespread use and their discharge into the environment. In this study, the anaerobic biodegradation of four dinitrotoluene isomers, 2,3-, 2,4-, 2,6- and 3,4-DNT, was investigated using Lactococcus lactis subsp. lactis strain 27, which was isolated from the intestines of earthworms. Liquid chromatography/mass spectrometry and NMR spectroscopy showed that L. lactis strain 27 non-specifically reduced the nitro groups on the tested dinitrotoluenes to their corresponding aminonitrotoluenes. L. lactis strain 27, however, did not reduce either sequentially or simultaneously two nitro groups of the dinitrotoluenes, resulting in the formation of the corresponding diaminotoluenes. In vitro formation of dinitroazoxytoluenes suggested the presence of oxygen-sensitive hydroxylaminonitrotoluenes. L. lactis strain 27 was capable of reducing 2,4-, 2,6-, 2,3-, and 3,4-dinitrotoluenes up to 173.6, 66.6, 287.1, and 355 microM, respectively in 12 h incubation. A relatively rapid reduction was observed in the case of the 2,3-, and 3,4-dinitrotoluenes, which have vicinal nitro groups on their arene structure. Non-specific anaerobic reduction of dinitrotoluenes by the intestinal bacterium L. lactis strain 27 differentiated the extent of reduction of DNTs according to the substitutional position of the nitro groups and produced in vitro more toxic dinitroazoxytoluenes, suggesting that anaerobic biotransformation of dinitrotoluenes could increase environmental risk. 相似文献
20.
Evaluating spectroscopic and chromatographic techniques to resolve dissolved organic matter via end member mixing analysis 总被引:1,自引:0,他引:1
Real-time or near real-time in-situ monitoring of dissolved organic matter (DOM) composition in natural waters and engineered treatment systems provides critical information to water quality scientists and engineers, particularly when the monitoring techniques can provide some information about the chemical nature of DOM. The efficacy of various indices derived from rapid, low-cost spectroscopic and chromatographic techniques to discriminate DOM composition was tested for samples prepared from well-defined mixtures of purified Aldrich humic acid (PAHA) and Suwannee River fulvic acid (SRFA). Sensitivities of the discrimination indices were examined by comparing (1) the differences between measured values and those predicted based from mass balance and the end member characteristics, and (2) the linear correlations between index values and mass ratios of the DOM mixtures. Size exclusion chromatography (SEC) results revealed that the weight-average molecular weight (MW(w)) may be a useful approach for tracking DOM mixing processes, although the number-average molecular weight (MW(n)) may be better for distinguishing different DOM compositions. Specific ultraviolet absorbance measured at 254 nm (SUVA(254)) performed better as a discrimination index than did two previously recommended absorbance ratios, both in terms of making better predictions of intermediate compositions and in exhibiting a more linear correlation with PAHA mass ratio. Several well-defined peaks in the derivative absorption spectra (301 and 314 nm for the first derivative, 217 nm for the third derivative, and 211 and 224 nm for the fourth derivative) also were found to be promising potential DOM discrimination indices. Finally, a fluorescence ratio based on humic- versus fulvic-like fluorescence proved to be a superior DOM discrimination index for the two DOM end members studied here. In general, this study illustrates the evaluation process that should be followed to develop rapid, low-cost discrimination indices to monitor DOM compositions based on end member mixing analyses. 相似文献