首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   810篇
  免费   6篇
  国内免费   4篇
安全科学   11篇
废物处理   31篇
环保管理   60篇
综合类   183篇
基础理论   167篇
污染及防治   254篇
评价与监测   62篇
社会与环境   47篇
灾害及防治   5篇
  2023年   10篇
  2022年   32篇
  2021年   19篇
  2020年   9篇
  2019年   14篇
  2018年   29篇
  2017年   32篇
  2016年   49篇
  2015年   18篇
  2014年   49篇
  2013年   59篇
  2012年   37篇
  2011年   67篇
  2010年   34篇
  2009年   31篇
  2008年   44篇
  2007年   43篇
  2006年   39篇
  2005年   28篇
  2004年   31篇
  2003年   18篇
  2002年   19篇
  2001年   12篇
  2000年   5篇
  1999年   5篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1983年   2篇
  1979年   2篇
  1966年   2篇
  1965年   3篇
  1964年   5篇
  1963年   4篇
  1962年   2篇
  1961年   4篇
  1960年   5篇
  1959年   2篇
  1958年   2篇
  1957年   5篇
  1942年   2篇
  1941年   2篇
排序方式: 共有820条查询结果,搜索用时 15 毫秒
651.
652.
Nitrogen (N) deposition has doubled the natural N inputs received by ecosystems through biological N fixation and is currently a global problem that is affecting the Mediterranean regions. We evaluated the existing relationships between increased atmospheric N deposition and biogeochemical indicators related to soil chemical factors and cryptogam species across semiarid central, southern, and eastern Spain. The cryptogam species studied were the biocrust-forming species Pleurochaete squarrosa (moss) and Cladonia foliacea (lichen). Sampling sites were chosen in Quercus coccifera (kermes oak) shrublands and Pinus halepensis (Aleppo pine) forests to cover a range of inorganic N deposition representative of the levels found in the Iberian Peninsula (between 4.4 and 8.1 kg N ha?1 year?1). We extended the ambient N deposition gradient by including experimental plots to which N had been added for 3 years at rates of 10, 20, and 50 kg N ha?1 year?1. Overall, N deposition (extant plus simulated) increased soil inorganic N availability and caused soil acidification. Nitrogen deposition increased phosphomonoesterase (PME) enzyme activity and PME/nitrate reductase (NR) ratio in both species, whereas the NR activity was reduced only in the moss. Responses of PME and NR activities were attributed to an induced N to phosphorus imbalance and to N saturation, respectively. When only considering the ambient N deposition, soil organic C and N contents were positively related to N deposition, a response driven by pine forests. The PME/NR ratios of the moss were better predictors of N deposition rates than PME or NR activities alone in shrublands, whereas no correlation between N deposition and the lichen physiology was observed. We conclude that integrative physiological measurements, such as PME/NR ratios, measured on sensitive species such as P. squarrosa, can provide useful data for national-scale biomonitoring programs, whereas soil acidification and soil C and N storage could be useful as additional corroborating ecosystem indicators of chronic N pollution.  相似文献   
653.
In the last 10 years, behavior assessment has been developed as an indicator of neurotoxicity and an integrated indicator of physiological disruption. Polycyclic aromatic hydrocarbon (PAH) release into the environment has increased in recent decades resulting in high concentrations of these compounds in the sediment of contaminated areas. We evaluated the behavioral consequences of long-term chronic exposure to PAHs, by exposing zebrafish to diets spiked with three PAH fractions at environmentally relevant concentrations. Fish were exposed to these chemicals from their first meal (5 days postfertilization) until they became reproducing adults (at 6 months old). The fractions used were representative of PAHs of pyrolytic (PY) origin and of two oils differing in composition (a heavy fuel oil (HO) and a light crude oil (LO)). Several tests were carried out to evaluate circadian spontaneous swimming activity, responses to a challenge (photomotor response), exploratory tendencies, and anxiety levels. We found that dietary PAH exposure was associated with greater mobility, lower levels of exploratory activity, and higher levels of anxiety, particularly in fish exposed to the HO fraction and, to a lesser extent, the LO fraction. Finally, our results indicate that PAH mixtures of different compositions, representative of situations encountered in the wild, can induce behavioral disruptions resulting in poorer fish performance.  相似文献   
654.
A new gravel-contact assay using rainbow trout, Oncorhynchus mykiss, embryos was developed to assess the toxicity of polycyclic aromatic hydrocarbons (PAHs) and other hydrophobic compounds. Environmentally realistic exposure conditions were mimicked with a direct exposure of eyed rainbow trout embryos incubated onto chemical-spiked gravels until hatching at 10 °C. Several endpoints were recorded including survival, hatching delay, hatching success, biometry, developmental abnormalities, and DNA damage (comet and micronucleus assays). This bioassay was firstly tested with two model PAHs, fluoranthene and benzo[a]pyrene. Then, the method was applied to compare the toxicity of three PAH complex mixtures characterized by different PAH compositions: a pyrolytic extract from a PAH-contaminated sediment (Seine estuary, France) and two petrogenic extracts from Arabian Light and Erika oils, at two environmental concentrations, 3 and 10 μg g?1 sum of PAHs. The degree and spectrum of toxicity were different according to the extract considered. Acute effects including embryo mortality and decreased hatching success were observed only for Erika oil extract. Arabian Light and pyrolytic extracts induced mainly sublethal effects including reduced larvae size and hemorrhages. Arabian Light and Erika extracts both induced repairable DNA damage as revealed by the comet assay versus the micronucleus assay. The concentration and proportion of methylphenanthrenes and methylanthracenes appeared to drive the toxicity of the three PAH fractions tested, featuring a toxic gradient as follows: pyrolytic?Arabian Light?Erika. The minimal concentration causing developmental defects was as low as 0.7 μg g?1 sum of PAHs, indicating the high sensitivity of the assay and validating its use for toxicity assessment of particle-bound pollutants.  相似文献   
655.
656.
Phthalates are common atmospheric contaminants used in the plastic industry. Ants have been shown to constitute good bioindicators of phthalate pollution. Hence, phthalates remain trapped on ant cuticles which are mostly coated with long-chain hydrocarbons. In this study, we artificially contaminated Lasius niger ants with four phthalates: dibutyl phthalate (DBP), diisobutyl phthalate (DiBP), di(2-ethylhexyl) phthalate (DEHP), and benzyl butyl phthalate (BBP). The first three have previously been found on ants in nature in Touraine (France), while the fourth has not. The four phthalates disappeared rapidly (less than 5 days) from the cuticles of live ants. In contrast, on the cuticles of dead ants, DEHP quantities remained unchanged over time. These results indicate that phthalates are actively absorbed by the cuticles of live ants. Cuticular absorption of phthalates is nonspecific because eicosane, a nonnatural hydrocarbon on L. niger cuticle, was similarly absorbed. Ants are important ecological engineers and may serve as bioindicators of ecosystem health. We also suggest that ants and more generally terrestrial arthropods may contribute to the removal of phthalates from the local environment.  相似文献   
657.

Purpose

The quality of fish produced in ponds needs to be ensured. Indeed, pond is often strongly connected to an agricultural watershed, and pesticides are a main health and environmental issue of concern. In this context, the purpose of this study is to highlight the management practices which could impact the pesticide contamination profiles in edible fish and to give recommendations for better practices.

Methods

A principal component analysis, coupled to a hierarchical cluster analysis, was performed to evaluate temporal evolution of contamination profiles and to assess variability among fish species and among sites according to watershed characteristics. The explicative variables correspond to muscular concentrations of pesticides (azoxystrobin, clomazone, diflufenican, carbendazim, isoproturon, metazachlor, napropamid) in three species of fish (Perca fluviatilis, Cyprinus carpio and Rutilus rutilus), caught in five ponds during two sampling campaigns. Management data are added variables in order to discuss about parameters suspected to be implicated in the contamination profiles recorded.

Results

This work shows that high amounts of pesticides applied, short crop rotation durations and bare soil practices led to contamination of sediments and fish and were associated to a “bad” management of watershed. Breeding fish that had low masses and establishing the fishing period at the end of winter seemed to be “bad” management of pond. Aggravating topological parameters were big watershed coupled to small pond and high proportions of sand soils in the watershed.

Conclusions

Reducing amounts of pesticide used (e.g. policy agency plans, farmer acceptance), favouring long-term rotations and inter-cultures, adapting pond creation and fish farming practices to watershed management and topography all could reduce pesticide levels in edible fish and contribute to a better sustainability of the extensive fish farming in pond.  相似文献   
658.
Environmental Science and Pollution Research - In this study, levels of ten metals (arsenic, cadmium, cobalt, chromium, copper, iron, manganese, nickel, lead, and zinc) in muscles of farmed and...  相似文献   
659.
Soils are extremely rich in biodiversity, and soil organisms play pivotal roles in supporting terrestrial life, but the role that individual plants and plant communities play in influencing the diversity and functioning of soil food webs remains highly debated. Plants, as primary producers and providers of resources to the soil food web, are of vital importance for the composition, structure, and functioning of soil communities. However, whether natural soil food webs that are completely open to immigration and emigration differ underneath individual plants remains unknown. In a biodiversity restoration experiment we first compared the soil nematode communities of 228 individual plants belonging to eight herbaceous species. We included grass, leguminous, and non-leguminous species. Each individual plant grew intermingled with other species, but all plant species had a different nematode community. Moreover, nematode communities were more similar when plant individuals were growing in the same as compared to different plant communities, and these effects were most apparent for the groups of bacterivorous, carnivorous, and omnivorous nematodes. Subsequently, we analyzed the composition, structure, and functioning of the complete soil food webs of 58 individual plants, belonging to two of the plant species, Lotus corniculatus (Fabaceae) and Plantago lanceolata (Plantaginaceae). We isolated and identified more than 150 taxa/groups of soil organisms. The soil community composition and structure of the entire food webs were influenced both by the species identity of the plant individual and the surrounding plant community. Unexpectedly, plant identity had the strongest effects on decomposing soil organisms, widely believed to be generalist feeders. In contrast, quantitative food web modeling showed that the composition of the plant community influenced nitrogen mineralization under individual plants, but that plant species identity did not affect nitrogen or carbon mineralization or food web stability. Hence, the composition and structure of entire soil food webs vary at the scale of individual plants and are strongly influenced by the species identity of the plant. However, the ecosystem functions these food webs provide are determined by the identity of the entire plant community.  相似文献   
660.
Predictive modelling to map subtidal communities is an alternative to “traditional” methods, such as direct sampling, remote sensing and acoustic survey, which are neither time- nor cost-effective for vast expanses. The principle of this modelling is the use of a combination of environmental key parameters to produce rules to understand species distribution and hence generate predictive maps. This study focuses on subtidal kelp forests (KF) on the coast of Brittany, France. The most significant key parameters to predict KF frequency are (1) the nature of the substrate, (2) depth, (3) water transparency, (4) water surface temperature and (5) hydrodynamics associated with the flexibility of algae in a flow. All these parameters are integrated in a spatial model, built using a Geographical Information System. This model results in a KF frequency map, where sites with optimum key parameters show a deeper limit of disappearance. After validation, the model is used in the context of Climate Change to estimate the effect of environmental variation on this depth limit of KF. Thus, the effects of both an increase in water temperature and a decrease in its transparency could lead to the complete disappearance of KF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号