首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   1篇
  国内免费   4篇
废物处理   9篇
环保管理   11篇
综合类   8篇
基础理论   17篇
污染及防治   30篇
评价与监测   14篇
社会与环境   9篇
灾害及防治   1篇
  2023年   9篇
  2022年   10篇
  2021年   7篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   1篇
  2014年   4篇
  2013年   9篇
  2012年   9篇
  2011年   5篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   5篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2000年   1篇
  1994年   2篇
  1992年   1篇
  1956年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
61.
There is increasing optimism regarding the possible role that renewable energy technologies can play in the coming decade in the energy sector in India. Some recent developments and trends within the renewable energy sector that are responsible for this optimism, and the likely investments of the order of US$1210 million in the next four to five years, are discussed. The paper includes discussion of the recent changes in the implementing institutions, innovation in financing renewable technology investments, and a shift from financial to fiscal incentives. In addition, wind power generation, small hydro, photovoltaic and gasifier programmes are analysed in some detail.  相似文献   
62.
In India, a few studies have been conducted for analyzing the generation rates and composition of medical waste (MW). Inadequate information about the amount and composition of MW results in ineffective management practices. The present study seeks to evaluate healthcare waste (HCW) generation rates by healthcare facilities (HCFs) available in Uttarakhand, a northern state of India. Study also focuses on modeling the quantity of different types of MW generated at various HCFs and determining significant factors contributing towards MW generation. Seasonal variation in amount of MW generated from various HCFs has also been considered. To achieve these objectives, cross-sectional as well as longitudinal data have been collected from various HCFs in Uttarakhand, India. The survey revealed that around 36% of the total HCFs did not segregate their MW as per policy guidelines. Cross-sectional data for May 2015 were collected from 75 HCFs to analyze and model the composition and quantity of HCW generated. Multiple Linear Regression and Artificial Neural Network techniques were applied to model cross-sectional data. In the composition of the overall MW, ‘yellow waste’ carries the maximum share, followed by ‘red waste’ and then the ‘blue waste’. In addition, the ‘type of HCF’ and ‘bed occupancy’ have been modeled as the important factors, contributing towards the MW generations rates. Longitudinal data for 2 years (2013 and 2014) were collected to examine seasonal variation in HCW generation rates using polynomial regression analysis. Result shows that MW quantity also varies with the change in the season. Findings of the study will help hospitals and waste treatment facilities to predict amount of waste that may be generated, and plan resources towards efficient handling and disposal of MW.  相似文献   
63.

The availability of drinkable water, along with food and air, is a fundamental human necessity. Because of the presence of higher amounts of salt and pollution, direct use of water from sources such as lakes, sea, rivers, and subsurface water reservoirs is not normally suggested. Solar is still a basic technology that can use solar energy to transform accessible waste or brackish water into drinkable water. Exergy analysis is a strong inferential technique for evaluating the performance of thermal systems. Exergy is becoming more popular as a predictive tool for analysis, and there is a rising interest in using it. In this paper, performance analysis on the aspect of energy and exergy from the proposed solar still (PSS) (conventional solar still with the photovoltaic modules-AC heater) was analyzed on three different water depths (Wd) conditions (1, 2, and 3 cm). Using a solar still with an electric heater, the daily potable water production was found as 8.54, 6.37, and 4.43 kg, for the variations in water depth (Wd) of 1, 2, and 3 cm respectively. The energy and exergy efficiency of the PSS at the Wd of 1, 2, and 3 cm were 75.67, 51.45, and 37.21% and 5.08, 2.29, and 1.03%, respectively. At 1 cm Wd, PSS produced the maximum freshwater yield as compared to the other two water depths. When the Wd is increased from 1 to 2 cm and from 1 to 3 cm, the yield is decreased up to 27.3 and 52.7%, respectively. Similarly, the energy and exergy efficiency is decreased up to 36.8 and 53.2% and 50.4 and 80.6%, respectively. The water cost of the modified solar still is calculated as 0.028 $/kg for the least water thickness.

  相似文献   
64.
Human modification of hydrological connectivity of landscapes has had significant consequences on ecosystem functioning. Artificial drainage practices have fundamentally altered northern landscapes, yet these man made channels are rarely considered in ecosystem management. To better understand the effects of drainage ditches, we conducted a landscape-scale analysis across eleven selected study regions in Sweden. We implemented a unique approach by backfilling ditches in the current digital elevation model to recreate the prehistoric landscape, thus quantifying and characterizing the channel networks of prehistoric (natural) and current (drained) landscapes. Our analysis detected that 58% of the prehistoric natural channels had been converted to ditches. Even more striking was that the average channel density increased from 1.33 km km−2 in the prehistoric landscape to 4.66 km km−2 in the current landscape, indicating the extent of ditching activities in the northern regions. These results highlight that man-made ditches should be accurately mapped across northern landscapes to enable more informed decisions in ecosystem management.  相似文献   
65.
Environmental Chemistry Letters - The rising energy conflicts and environmental pollution are calling for the rapid development of advanced techniques such as photoelectrocatalysis to...  相似文献   
66.
Groundwater is a valuable renewable resource for human life. The two major threatening issues being faced by groundwater are its depletion and degradation which affect both the quantity and the quality of groundwater. Though scientific output has progressed well ahead in the domain of groundwater, very little has been done with respect to the establishment of the groundwater governance framework. Groundwater is perceived as a widely distributed resource, but it is fundamentally a local entity. The paper presents the groundwater governance framework from the regional perspective of Fatehgarh Sahib district of Punjab, India—an over-exploited groundwater region.  相似文献   
67.
Environmental Science and Pollution Research - Coronavirus disease 2019 (COVID-19) has delayed global economic growth, which has affected the economic life globally. On the one hand, numerous...  相似文献   
68.
The Coal Industry Advisory Board (CIAB) of the International Energy Agency (IEA) estimated the total methane emissions from worldwide mining, treatment and storage of coal to be approximately 25 million tonnes/year for 1990. Slightly more than one million tonnes of methane are utilized by the industry. Thus, the net annual discharge to the atmosphere is 24 million tonnes. Methane emissions data were available for the U.S., the U.K., former U.S.S.R., Australia, China, Germany, Poland and Czechoslovakia. Methane emissions for India and S. Africa were estimated from a linear correlation between the average depth of mining and specific methane emissions derived from the available data for the eight countries. These ten largest coal producing countries represented nearly 90% of world coal production in 1990. Total methane emissions for the world coal industry were calculated by prorating the methane emissions from these ten countries in proportion to coal production.The reported values represent the best international data available at present. The net total emissions of 24 million tonnes/year are substantially less than some previously reported indirect estimations and constitute only 4 to 6% of the global methane emissions.  相似文献   
69.
Sponges (Porifera) represent the evolutionary oldest metazoan phylum still extant today. They have developed a complex Bauplan, based on the existence of structural and regulatory molecules; many of these have been cloned and analyzed in the past years. The demosponge Suberites domuncula has been used as a suitable model to demonstrate that these animals not only possess an adaptive immune response on the level of cytokines, but also, as pointed out here, on the level of synthesis of bioactive alkyl-lipid derivatives. From specimens of S. domuncula the two lyso-PAF (platelet-activating factor) compounds, 1-O-hexadecyl-sn-glycero-3-phosphocholine and 1-O-octadecyl-sn-glycero-3-phosphocholine, have been identified and characterized. These two lyso-PAFs showed pronounced anti-bacterial activity. In the central part of this paper it is shown that the level of synthesis of the lyso-PAF congeners increased in response to the model compound, the endotoxin lipopolysaccharide (LPS). Treatment of the tissue with LPS for 72 h substantially increased the synthesis. In order to prove that the lyso-PAFs are really synthesized by the sponge, the key enzyme of the alkyl-dihydroxyacetonephosphate pathway, i.e. alkyl-dihydroxyacetonephosphate synthase (ADS), was cloned from S. domuncula. This sponge enzyme comprises the characteristic features of metazoan ADS enzymes; it is increasingly expressed in the tissue and in the in vitro cell culture system after exposure to LPS. These data are taken as a strong indication that bioactive, low-molecular weight, non-proteinaceous lipid derivatives function in an adaptive manner in response to the endotoxin.Communicated by R. Cattaneo-Vietti, Genova  相似文献   
70.
Indoor air pollutant concentrations can be influenced by how rapidly species are transported to and from surfaces. Consequently, a greater understanding of indoor transport phenomena to surfaces improves estimates of human exposure to indoor air pollutants. Here, we introduce two methods of rapidly and directly measuring species fluxes at indoor surfaces, allowing us to evaluate the transport-limited deposition velocity, vt (a mass-transfer coefficient). The deposition velocity sensor (DeVS) method employs a small microbalance coated with a pure hydrocarbon, preferably octadecane. We quantify flux (or evaporation rate) of the hydrocarbon into a room by observing the rate of mass loss on the microbalance. The transport-limited deposition velocity, vt,octadecane, is then obtained by combining the flux with the vapor pressure of the hydrocarbon. Simultaneously, vt,ozone is quantified using the deposition velocity of ozone (DeVO) method, which acts as a standard to calibrate and evaluate DeVS. Specifically, DeVO evaluates ozone transport to surfaces by quantifying the conversion by ozone of nitrite to nitrate on a glass fiber filter. Simultaneous laboratory chamber experiments demonstrates that vt for octadecane and ozone are strongly correlated, with the values for ozone 1.5 times greater than that for octadecane. In an office experiments, the DeVS method responds within minutes to step changes in conditions such as occupancy, activities and ventilation. At present, the results are in order-of-magnitude agreement with predicted indoor mass-transfer coefficients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号