全文获取类型
收费全文 | 1810篇 |
免费 | 332篇 |
国内免费 | 711篇 |
专业分类
安全科学 | 332篇 |
废物处理 | 45篇 |
环保管理 | 112篇 |
综合类 | 1605篇 |
基础理论 | 244篇 |
污染及防治 | 159篇 |
评价与监测 | 150篇 |
社会与环境 | 117篇 |
灾害及防治 | 89篇 |
出版年
2024年 | 23篇 |
2023年 | 56篇 |
2022年 | 129篇 |
2021年 | 155篇 |
2020年 | 173篇 |
2019年 | 103篇 |
2018年 | 90篇 |
2017年 | 133篇 |
2016年 | 104篇 |
2015年 | 109篇 |
2014年 | 93篇 |
2013年 | 121篇 |
2012年 | 157篇 |
2011年 | 170篇 |
2010年 | 193篇 |
2009年 | 192篇 |
2008年 | 147篇 |
2007年 | 156篇 |
2006年 | 146篇 |
2005年 | 107篇 |
2004年 | 78篇 |
2003年 | 47篇 |
2002年 | 50篇 |
2001年 | 45篇 |
2000年 | 38篇 |
1999年 | 21篇 |
1998年 | 5篇 |
1997年 | 4篇 |
1996年 | 3篇 |
1995年 | 2篇 |
1994年 | 1篇 |
1992年 | 2篇 |
排序方式: 共有2853条查询结果,搜索用时 0 毫秒
51.
溶解氧对水质变化和沉积物吸磷过程的影响 总被引:3,自引:1,他引:3
通过室内模拟实验,研究有光和黑暗条件下,富氧和缺氧环境对东太湖沉积物吸收磷酸盐过程的影响.研究结果表明沉积物能够吸收上覆水中高质量浓度的磷酸盐,但吸收量和吸收速度随环境条件的不同而不同;缺氧环境上覆水中的pH高于或略高于相同光照条件下的富氧环境;实验开始的前20d,富氧环境有利于沉积物吸附上覆水中的磷酸盐,并快速达到吸附平衡,缺氧环境则相反;实验开始20d后,有光缺氧组上覆水中磷酸盐质量浓度开始迅速下降,且明显低于其他实验条件;富氧环境沉积物中总磷的增加量高于缺氧环境,其含量顺序为无光富氧>有光富氧>有光缺氧>无光缺氧;溶解氧对沉积物中铁结合态磷和钙结合态磷含量的影响较大,对有机磷含量的影响不大. 相似文献
52.
53.
分析了湿热环境对装备的影响及机理,介绍了美国军标810C/D/E/F各版本中湿热试验程序的特点,分析了这些程序的变化过程及其对GJB 150/150A湿热试验程序的影响,指出了810F/和GJB150A的湿热试验的目的仅是用以加速发现装备湿热问题,不再模拟寿命期遇到的复杂的温、湿度环境,实际上是一种加速试验。 相似文献
54.
55.
青岛近海生物气溶胶中可培养微生物浓度及群落多样性的季节变化 总被引:1,自引:5,他引:1
为了研究近海生物气溶胶中可培养微生物浓度和群落多样性,于2009年7月~2010年6月在青岛两个采样点连续采集生物气溶胶样品,分析了其中陆源细菌、海源细菌、陆源真菌和海源真菌的浓度,并计算了Shannon-Weiner指数、Simpson’s指数和Pielou指数.结果表明,陆源细菌和海源细菌月均浓度分别为12~436 CFU·m-3和25~561 CFU·m-3,陆源真菌和海源真菌月均浓度分别为0~817 CFU·m-3和11~1 346 CFU·m-3之间.陆源细菌、海源细菌、陆源真菌和海源真菌浓度在冬季月份较低,2月达到最低值,在春夏月份较高.海源微生物对总可培养类微生物的贡献高于陆源,平均占63%.可培养微生物物种数在17~102之间,与微生物浓度具有一定的相关性,但并未呈现出明显的季节变化.3种指数表明,生物气溶胶中陆源细菌、海源细菌、陆源真菌和海源真菌的群落结构在2月最简单,1月、11月和5月群落多样性较高,群落多样性与浓度的季节变化特征并不一致,而且不同类别的微生物群落存在季节和空间差异. 相似文献
56.
57.
低溶解氧和磷缺乏引发的非丝状菌污泥膨胀及控制 总被引:7,自引:2,他引:7
针对污泥培养过程中出现的非丝状菌污泥膨胀,分析了发生膨胀后污泥的特征、性状及其降解污染物性能.反应器中低溶解氧浓度(0~0.7mg/L)和低P/BOD5值(0.78/100) 2种因素共同作用导致污泥膨胀.污泥胞外多聚糖含量越高,污泥憎水性越小,SVI也越高.通过提高溶解氧浓度和P/BOD5值,可使污泥沉降性能得到恢复.此外,向膨胀污泥中投加多孔填料,在不降低处理效能的情况下,很快使系统免受污泥沉降性能恶化的困扰,而向膨胀污泥中投加强氧化剂NaClO并不能有效控制污泥膨胀. 相似文献
58.
59.
低氧环境对大型底栖动物的影响 总被引:1,自引:0,他引:1
2006年8月在调查中发现长江口以南浙江沿岸存在一个明显的低氧区,本文在此基础上对低氧区内外的大型底栖动物的群落结构、种类组成及生物多样性进行研究,并对低氧环境对其产生的影响进行了探讨,结果发现:低氧区内是底栖动物生物量和丰度的高值区;CLUSTER和MDS标序把底栖动物分为了两个生物群落组群,一个组群属于低氧环境下的组群,近一步用ANOSIM检验发现,这两个组群差异显著(R=0.347,P=0.75%);低氧区内的多样性指数(H′=1.71)小于低氧区外的相应值(H′=2.53)。说明了低氧环境已经对大型底栖动物的生物量、丰度、群落结构、生物多样性等方面产生了影响。 相似文献
60.
巢湖藻类生物量季节性变化特征 总被引:14,自引:2,他引:14
在2008年对巢湖浮游藻类的生态分布进行了为期1 a的调查研究,并采用自制"藻类上浮/下沉捕集器"定量研究了水柱中藻类上浮和下沉速率的季节性变化.结果表明,蓝藻为巢湖主要的水华优势群落,但各个季节优势水华种群有所差别,春季鱼腥藻占优势,微囊藻次之;夏、秋两季微囊藻占绝对优势.5月开始,水柱中藻类生物量明显增加;8月份达到最大值,叶绿素含量全湖平均为146.37 mg.m-3.表层沉积物中藻类生物量在9.75~16.24 mg.kg-1之间,最小值出现在夏季,然后逐渐升高,最大值出现在冬季的11月.研究期间(5~10月),水柱中浮游藻类一直存在上浮和下沉现象,上浮速率在总体上呈先上升后下降的趋势,最大值出现在8月初,为0.036 8 mg.(m2.d)-1;下沉速率则呈现先缓慢上升后急剧下降的趋势,最大值出现在9月初,为0.032 1 mg.(m2.d)-1.多元逐步回归统计表明,温度是巢湖藻类生物量变化最为显著的影响因子,其次为总氮(TN)和总磷(TP). 相似文献