首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   0篇
  国内免费   1篇
废物处理   3篇
综合类   4篇
基础理论   2篇
污染及防治   64篇
评价与监测   4篇
社会与环境   1篇
  2022年   1篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   4篇
  2004年   7篇
  2003年   3篇
  2002年   2篇
  2001年   5篇
  2000年   3篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
71.
Environmental properties of organic matter contained halogen and sulfur were studied in sediments of bleached kraft pulp mill effluent (BKME) recipient lakes and 2 m3 outdoor enclosures (mesocosms). The BKME contributed to 1% (v/v) of the total water flow in the lake downstream of the pulp mill where the sediments contained 1.7 to 4 mg of tetrahydrofuran extractable organic halogen (EOX-Cl) and 0.6 to 0.8 mg of tetrahydrofuran extractable organic sulfur (EOS-S) g−1 of organic matter. Upstream sediment contained 0.03 mg of EOXCl and 0.7 mg of EOS-S g−1 of organic matter. EOX was a better indicator for the influence of BKME in the recipient sediment than EOS. The polarity of BKME contained EOX corresponded to log Kow of < 1, and that of the downstream sediment contained EOX to > 4.5. HP-SEC analysis of the molecular weight distribution (MWD) of the EOX showed a peak between 300 to 600 g mol−1 for the BKME and between 1000 to 2000 g mol−1 for the downstream sediment. The MWD of the BKME contained EOS peaked at 300 to 1000 g mol−1, and that of the downstream sediment contained EOS at 1000 to 5000 g mol−1. These results indicate that BKME contained organic halogen and sulfur undergo major structural transformations when incorporated into sediment. The biota-to-sediment accumulation factor (BSAF) of EOX from sediments formed downstream of the mill and in the mesocosms to the lipids ofLumbriculus variegatus was 0.4 to 0.7. This is of a similar order of magnitude to the BSAF reported for 2,3,7,8-tetrachlorodibenzop-dioxin and 2,3,7,8-tetrachlorodibenzofuran.  相似文献   
72.
Background, Aims and Scope Despite the large number of studies on the forms of sulfur in marine deposits, investigations on sulfur organic compounds are still rare. It is known that the processes leading to formation of intermediate and final sulfur compounds (including organic ones) in modern deposits are the results of microbiological transformation of sulfur containing proteins, as well as the microbiological reduction of sulfate ions. The latter are finally reduced by anaerobic sulfate-reducing bacteria to H2S, HS and S2−; the total sum of these is referred to as ‘hydrogen sulfide’ in chemical oceanography. Further, the formation of reduced sulfur organic derivatives (sulfides and polysulfides) is the result of interaction of the organic substance destruction products with the sulfide ions. In such cases, the main source of organic substances, as well as sulfates for the sulfur reducing processes, is the pore water in the sediments. The choice of the target of our study is based on the fact that the eastern part of the Gulf of Finland water area receives the bulk of the anthropogenic load of the St. Petersburg region. Low vertical intermixing of the water thickness is observed there (thus creating a deficiency of oxygen near the bottom), and the bottom sea current transfers the polluted salty water of the Baltic Sea into the Neva Bay. The whole of the above are the preconditions for the formation of sulfur-bearing organic compounds. A great number of bottom sediment samples for analytical surveys were collected in the Eastern Gulf of Finland during research expeditions in the years of 1997 and 2001. These were screened for structures of sulfur organic microcontaminants, including organic forms of sulfur, using advanced instrumentation and experienced personnel in our two, cooperating laboratories. This work is a part of the research being carried out on organic micro-admixtures present in bottom sediments, and is the summary of our findings on previously unstudied sulfur organic substances there. Materials and Methods A number of sulfur organic compounds present in nineteen bottom sediment samples from the Eastern Gulf of Finland (EGF) were characterized by high performance gas chromatography connected to low and high resolution mass spectrometers (GC/LRMS and GC/HRMS). The structure screening was carried out as compared with literature and library mass spectra, and taking the GC retention times into account. In the cases of an absence of mass spectra not in the literature, interpretation of the most probable structures was performed with the help of high resolution mass-spectrometric data, fragmentation rules for sulfur-bearing organic substances and ICLU simulation of spectra. These data were registered to form a conclusive ‘fingerprint’ for identification and confirmation of the structure of each novel compound found, e.g. by later syntheses of authentic model compounds. The relative contents of sulfur organic compounds were determined from MS response ratios of each compound to 2-fluorine naphthalene (internal standard). Results This paper is a completion of work, which has been published in part as three papers in the European Journal of Mass Spectrometry. As the total study result, 43 sulfur-bearing compounds were characterized. The mass spectra of 20 of them were found in the literature. The most probable structures for the 23 compounds whose mass-spectra were not available in the literature data were proposed. All of those 23 compounds were detected in bottom sediments for the first time, and 5 of them were described as originating from plants or being generated by chemical synthesis products, while the remaining 18 substances were previously unknown. The structures of these were deduced to be most probably the following (in order of their GC retention): dichloromethyl thiylsulfenylchloride, chloromethyl dichloromethyl disulfide, 3,4-dithiacyclohexene, 1,2,4-trithiacycloheptane, 1,2,3-trithiacyclohexane, tetrathiacyclopentane, 3,4,5-trithiacyclohexene, 1,2,4-trithiacyclohexane, cyclopropylhydrotrisulfide, 1,2-dithiane-3-thiol, 1,3-dithiane-2-thiol, bis(trichloromethyl)-tri-sulfide, 1,2,4,5-tetrathiacyclohexane, 1,2,3,4-tetrathiacycloheptane, 1,2,3,4-tetrathiacycloheptane, 1,2,3,4-tetrathia-cyclo-hexane, pentathiacyclohexane, and 1,2,4,6-tetrathiacyclooctane. The highest amounts of sulfur organic compounds were found in the deepest, bottom areas in the open part of the sea, where the salinity was highest, and oxygen deficiency occurred as well. Also, some coastal places with a high solid matter deposition rate had elevated contents of sulfur organic compounds. Discussion From the 43 sulfur organic compounds found, the HRMS data provided the atomic composition of the molecular ions for 16 compounds with a high confidence (see Table 3). The LRMS spectra could be identified with catalogue or literature spectra in 29 cases. The MS information obtained was insufficient in two cases: 1) The obvious molecular ion (at m/z 110) of compound 1 was not visible in LRMS. 2) For compound 43, the HRMS measurement, due to the low intensity (2%) of the molecular ion (m/z 210), could not exclude the presence of 2 oxygen atoms (instead of one sulfur atom) in the molecule. Major fragments, however, of our 43, certainly contained no oxygen atoms according to HRMS. The limited LRMS data in the literature, for an isomer of 43, had m/z values of all fragments different from those of the compound found by us. The retention times (RT) formed one more evidence for identity between compounds in different samples. The use of different non-polar columns in GC and similar, but not identical, temperature programs produced eluted peaks of novel and known compounds in each sample (mixture) in GC/HRMS and GC/LRMS. These gave sets of RTs which were in a very significant linear correlation (measured example R = 0.999866, p = 1.85E-06, N = 5). Therefore, the RTs in the HRMS analysis systems could be converted to values comparable with those from the LRMS device. The RT values, HRMS m/z values, LRMS spectra, and ICLU simulation results for each organic sulfur compound form an identification ‘fingerprint’. The interpretation of these experimental data, with supporting use of fragmentation rules, allow the giving of a provisional name and structure to the ‘suspect’. In this study and in environmental surveys of micropollutants in general, the compounds suspected of anthropogenic or natural origin occur at low levels in complex mixtures. Therefore, no bulk amount of an authentic, pure model substance for the suspect is available quite often. The most probable name and structure from the fingerprint data are very useful in guiding the preparation of the model substance for a conclusive identification. Similarly, the unknown criminal can be identified in advance by forensic science and his fingerprint, DNA, etc. as registered before the arrest. The analogy can be found in the literature and CAS register of organic polysulfides, which in great part consists of the results of sensitive mixture analysis methods. Conclusions Sediment of the Eastern Gulf of Finland is over large areas anaerobic, as indicated by the existence of novel, non-oxygenated sulfur organic microcontaminants. These substances were most abundant in anoxic and saline, deep bottom regions, and, in addition, in one coastal area near industrial discharges. This occurrence, and also the limited information about sulfur organic compounds in scientific literature, is considered evidence for the dominantly natural processes in their formation. Recommendations and Perspectives The importance and necessity of investigating the sulfur organic compounds in the bottom sediments, result from the fact that their presence can be an indicator of stable anaerobic processes. Similarly, the oxygen disappearance (anoxia) in the marine water, due to a high concentration of the sulfate ions and relatively high content of organic matter, is practically always connected with the appearance of hydrogen sulfide and sulfides. The generation of sulfur organic compounds precedes the formation of the new, or expansion of the existing anaerobic (‘hydrogen sulfide’) zones, which lead to such environmental disasters as mass destruction of hydrobionts. Many organic compounds of sulfur, including sulfides and polysulfides, are toxic to the aquatic organisms. Therefore, in addition to the danger of mass wholesale deaths of marine fauna in the bottom sediments region, there exists a probability of secondary pollution of the water thickness as well, due to the entry of those substances from bottom sediments in the water when the environmental conditions are changed (stormy weather, floods, geological activity of the earth’s crust, etc.).  相似文献   
73.
Effects of fullerene-spiked sediment on a benthic organism, Lumbriculus variegatus (Oligochaeta), were investigated. Survival, growth, reproduction, and feeding rates were measured to assess possible adverse effects of fullerene agglomerates produced by water stirring and then spiked to a natural sediment. L. variegatus were exposed to 10 and 50 mg fullerenes/kg sediment dry mass for 28 d. These concentrations did not impact worm survival or reproduction compared to the control. Feeding activities were slightly decreased for both concentrations indicating fullerenes’ disruptive effect on feeding. Depuration efficiency decreased in the high concentration only. Electron and light microscopy and extraction of the worm fecal pellets revealed fullerene agglomerates in the gut tract but not absorption into gut epithelial cells. Micrographs also indicated that 16% of the epidermal cuticle fibers of the worms were not present in the 50 mg/kg exposures, which may make worms susceptible to other contaminants.  相似文献   
74.
75.
Thirteen river waters and one humic lake water were characterized. The effects of dissolved organic matter (DOM) on the bioavailability of atrazine, pyrene and benzo[a]pyrene (B[a]P) was evaluated. Binding of the chemicals by DOM was analyzed with the equilibrium dialysis technique. For each of the water samples, 24 h bioconcentration factors (BCFs) of the chemicals were measured in Daphnia magna. The relationship between DOM and other water characteristics (including conductivity, water hardness and pH), and bioavailability of the chemicals was studied by performing several statistical analyses, including multiple regression analyses, to determine how much of the variation of BCF values could be explained by the quantity and quality of DOM. The bioavailability of atrazine was not affected by DOM or any other water characteristics. Although equilibrium dialysis showed binding of pyrene to DOM, the bioavailability of pyrene was not significantly affected by DOM. The bioavailability of B[a]P was significantly affected by both the quality and quantity of DOM. Multiple regression analyses, using the quality (ABS270 and HbA%) and quantity of DOM as variables, explained up to 70% of the variation in BCF of B[a]P in the waters studied.  相似文献   
76.
Lakes polluted by pulp mill and urban wastes including chlorobleaching of pulp, semipolluted lakes and reference lakes in nearly natural condition in Central Finland were studied for contents of mercury, methyl mercury and organochlorine compounds in sediment, plankton, roach and pike. Chlorobleaching had caused a 30-fold concentration of Hg in bottom sediment related to that of the purest reference lake. This was not reflected to the mercury levels in fish which were highest at one natural condition (humic) lake and rather high also at semipolluted lake Päijänne. Mercury in fish was shown to be mostly methylated but not completely and its time trends could be estimated. Chloroform showed no but carbon tetrachloride, tetrachloroethylene and chlorinated cymenes significant bioaccumulation in fish. Levels of chlorophenols from bleaching had strongly decreased but pentachlorophenol and 2,3,4,6-tetrachlorphenol levels remained related to earlier results. Using fat basis attenuated the power of estimation of food chain enrichment by a three throphic level model for lipohilic biocides and a strong proof was obtained of the enrichment of hexachlorobenzene. The time trends at Päijänne were decreasing for mercury and DDE but increasing for PCB.  相似文献   
77.
A five-stage sequential extraction procedure was used to determine the distribution of 11 metals (Cd, Cr, Cu, Mo, Pb, Zn, As, Co, V, Ni, Ba), and sulphur (S) in bottom ash and in fly ash from a fluidized bed co-combustion (i.e. wood and peat) boiler of Stora Enso Oyj Oulu Mill at Oulu, Northern Finland, into the following fractions: (1) water-soluble fraction (H2O); (2) exchangeable fraction (CH3COOH); (3) easily reduced fraction (NH2OH-HCl); (4) oxidizable fraction (H2O2 + CH3COONH4); and (5) residual fraction (HF + HNO3 + HCl). Although metals were extractable in all fractions, the highest concentrations of most of the metals occurred in the residual fraction. From the environmental point of view, this fraction is the non-mobile fraction and is potentially the least harmful. The Ca concentrations of 29.3 g kg(-1) (dry weight) in bottom ash and of 68.5 g kg(-1) (dry weight) in fly ash were correspondingly approximately 18 and 43 times higher than the average value of 1.6 g kg(-1) (dry weight) in arable land in Central Finland. The ashes were strongly alkaline pH (approximately 12) and had a liming effects of 9.3% (bottom ash) and 13% (fly ash) expressed as Ca equivalents (dry weight). The elevated Ca concentrations indicate that the ashes are potential agents for soil remediation and for improving soil fertility. The pH and liming effect values indicate that the ashes also have a pH buffering capacity. From the environmental point of view, it is notable that the heavy metal concentrations in both types of ash were lower than the Finnish criteria for ash utilization.  相似文献   
78.
The steel industry is characterised by large amounts of CO2 emissions, but there is no easy means to reduce these emissions. One interesting option for the reduction of CO2 emissions could be the utilisation of steelmaking slags for carbon dioxide mineralisation. In this option CO2 is bound with the calcium of the slag material, producing stable carbonate as an end product. The utilisation of steelmaking slags as the raw material for carbon dioxide mineralisation will change the quality of the slags. If, however, this change degrades the slags it could prevent the use of slags in carbon dioxide mineralisation or make it very expensive.The purpose of the research presented here is to evaluate this issue with the help of a case study where the quality of the residual slag from the recently suggested carbonation method was experimentally investigated. The CO2 mineralisation method, based on steelmaking slags and ammonium salt solutions, was found to change the quality of the slags: the calcium content was reduced, the CaO and Ca(OH)2 phases were completely dissolved, and the solubility of the V and Cr increased notably. This residual slag would presumably have to be handled as waste. Currently, the steelmaking slag used in the case study is defined as a by-product, but if it is used for CO2 mineralisation instead of liming its legal status will be re-evaluated. Subsequently, the CO2 mineralisation process could possibly be defined as an end-of-waste procedure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号