首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   9篇
  国内免费   2篇
安全科学   8篇
废物处理   9篇
环保管理   34篇
综合类   62篇
基础理论   45篇
环境理论   1篇
污染及防治   78篇
评价与监测   9篇
社会与环境   10篇
灾害及防治   4篇
  2023年   4篇
  2022年   3篇
  2021年   6篇
  2020年   5篇
  2019年   6篇
  2018年   3篇
  2017年   6篇
  2016年   11篇
  2015年   9篇
  2014年   9篇
  2013年   24篇
  2012年   12篇
  2011年   25篇
  2010年   20篇
  2009年   12篇
  2008年   15篇
  2007年   9篇
  2006年   7篇
  2005年   5篇
  2004年   11篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   5篇
  1990年   2篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1964年   1篇
  1963年   1篇
  1957年   1篇
  1928年   1篇
排序方式: 共有260条查询结果,搜索用时 15 毫秒
191.
The relationship between sulfur in coal, boiler exit gas temperature, and the carbon portion of fly ash have a major effect on the electrical properties of fly ash. Whether effective collection of fly ash is obtained by the electrostatic precipitator installation alone or the precipitator—mechanical combination depends primarily on a knowledge of this relationship. Fly ash electrical properties can range from a highly "resistive" to a highly "conductive" state which can appreciably alter the precipitator collection performance. A correlation of coal sulfur and boiler exit flue gas temperature is given to indicate the probability of expecting an optimum voltage—current relationship with different combinations of these factors. Carbon affects the electrical conditioning of fly ash by providing parallel paths of current leakage through the deposited dust layer. Therefore, removal of the carbon particles in a mechanical collector placed before the precipitator can alter the precipitator electrical characteristics.  相似文献   
192.
193.
To increase U.S. petroleum energy-independence, the University of Texas at Arlington (UT Arlington) has developed a coal liquefaction process that uses a hydrogenated solvent and a proprietary catalyst to convert lignite coal to crude oil. This paper reports on part of the environmental evaluation of the liquefaction process: the evaluation of the solid residual from liquefying the coal, called inertinite, as a potential adsorbent for air and water purification. Inertinite samples derived from Arkansas and Texas lignite coals were used as test samples.

In the activated carbon creation process, inertinite samples were heated in a tube furnace (Lindberg, Type 55035, Arlington, UT) at temperatures ranging between 300 and 850 °C for time spans of 60, 90, and 120 min, using steam and carbon dioxide as oxidizing gases. Activated inertinite samples were then characterized by ultra-high-purity nitrogen adsorption isotherms at 77 K using a high-speed surface area and pore size analyzer (Quantachrome, Nova 2200e, Kingsville, TX). Surface area and total pore volume were determined using the Brunauer, Emmet, and Teller method, for the inertinite samples, as well as for four commercially available activated carbons (gas-phase adsorbents Calgon Fluepac-B and BPL 4?×?6; liquid-phase adsorbents Filtrasorb 200 and Carbsorb 30). In addition, adsorption isotherms were developed for inertinite and the two commercially available gas-phase carbons, using methyl ethyl ketone (MEK) as an example compound. Adsorption capacity was measured gravimetrically with a symmetric vapor sorption analyzer (VTI, Inc., Model SGA-100, Kingsville, TX). Also, liquid-phase adsorption experiments were conducted using methyl orange as an example organic compound. The study showed that using inertinite from coal can be beneficially reused as an adsorbent for air or water pollution control, although its surface area and adsorption capacity are not as high as those for commercially available activated carbons.

Implications: The United States currently imports two-thirds of its crude oil, leaving its transportation system especially vulnerable to disruptions in international crude supplies. UT Arlington has developed a liquefaction process that converts coal, abundant in the United States, to crude oil. This work demonstrated that the undissolvable solid coal residual from the liquefaction process, called inertinite, can be converted to an activated carbon adsorbent. Although its surface area and adsorption capacity are not as high as those for commercially available carbons, the inertinite source material would be available at no cost, and its beneficial reuse would avoid the need for disposal.  相似文献   
194.
Abstract

This study evaluates air quality model sensitivity to input and to model components. Simulations are performed using the California Institute of Technology (CIT) airshed model. Results show the impacts on ozone (O3) concentration in the South Coast Air Basin (SCAB) of California because of changes in: (1) input data, including meteorological conditions (temperature, UV radiation, mixing height, and wind speed), boundary conditions, and initial conditions (ICs); and (2) model components, including advection solver and chemical mechanism. O3 concentrations are strongly affected by meteorological conditions and, in particular, by temperature. ICs also affect O3 concentrations, especially in the first 2 days of simulation. On the other hand, boundary conditions do not significantly affect the absolute peak O3 concentration, although they do affect concentrations near the inflow boundaries. Moreover, predicted O3 concentrations are impacted considerably by the chemical mechanism. In addition, dispersion of pollutants is affected by the advection routine used to calculate its transport. Comparison among CIT, California Photochemical Grid Model (CALGRID), and Urban Airshed Model air quality models suggests that differences in O3 predictions are mainly caused by the different chemical mechanisms used. Additionally, advection solvers contribute to the differences observed among model predictions. Uncertainty in predicted peak O3 concentration suggests that air quality evaluation should not be based solely on this single value but also on trends predicted by air quality models using a number of chemical mechanisms and with an advection solver that is mass conservative.  相似文献   
195.
ABSTRACT

Distributed power generation—electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin—has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region.

IMPLICATIONS The San Joaquin Valley is a fast growing region that demands increasing power generation to sustain the economic development, and at the same time it is one of the worst polluted areas in the United States. Hence, the region demands alternatives that minimize the air quality impacts of power generation. This paper addresses the air quality impacts of distributed generation of power, an alternative to central power generation that can potentially reduce greenhouse gas and pollutant emissions throughout the United States.  相似文献   
196.
The objective of the present paper is to derive remediation strategies for rural settlements contaminated by the Chernobyl accident in which annual doses to a critical group still exceed 1 mSv. Extensive radioecological data have been collected for 70 contaminated settlements. A dose model based on these data resulted in estimates that are on average close to and a bit less than the official dose estimates ('catalogue doses') published by the responsible Ministries of Belarus, Russia and Ukraine. For eight remedial actions that can be applied on a large scale, effectiveness and costs have been assessed in light of their dependence on soil type, contamination level and on the degree of previous application of remedial actions. Remediation strategies were derived for each of the 70 settlements by choosing remedial actions with lowest costs per averted dose and with highest degree of acceptability among the farmers and local authorities until annual doses are assessed to fall below 1 mSv. The results were generalised to 11 contamination/internal-dose categories. The total numbers of rural inhabitants and privately owned cows in the three countries distributed over the categories were determined and predicted until the year 2015. Based on these data, costs and averted doses were derived for the whole affected population. The main results are (i) about 2000 Sv can be averted at relatively low costs, (ii) the emphasis on reducing external exposures should be increased, (iii) radical improvement of hay-land and meadows and application of Prussian blue to cows should be performed on a large scale if annual doses of 1 mSv are an aim to be achieved, (iv) additional remedial actions of importance are fertilising of potato fields, distribution of food monitors and restriction of mushroom consumption, and (v) for inhabitants of some settlements (in total about 8600) annual doses cannot be reduced below 1 mSv by the remedial actions considered.  相似文献   
197.
Random forests for classification in ecology   总被引:27,自引:0,他引:27  
Cutler DR  Edwards TC  Beard KH  Cutler A  Hess KT  Gibson J  Lawler JJ 《Ecology》2007,88(11):2783-2792
Classification procedures are some of the most widely used statistical methods in ecology. Random forests (RF) is a new and powerful statistical classifier that is well established in other disciplines but is relatively unknown in ecology. Advantages of RF compared to other statistical classifiers include (1) very high classification accuracy; (2) a novel method of determining variable importance; (3) ability to model complex interactions among predictor variables; (4) flexibility to perform several types of statistical data analysis, including regression, classification, survival analysis, and unsupervised learning; and (5) an algorithm for imputing missing values. We compared the accuracies of RF and four other commonly used statistical classifiers using data on invasive plant species presence in Lava Beds National Monument, California, USA, rare lichen species presence in the Pacific Northwest, USA, and nest sites for cavity nesting birds in the Uinta Mountains, Utah, USA. We observed high classification accuracy in all applications as measured by cross-validation and, in the case of the lichen data, by independent test data, when comparing RF to other common classification methods. We also observed that the variables that RF identified as most important for classifying invasive plant species coincided with expectations based on the literature.  相似文献   
198.
ABSTRACT

Oil and natural gas wells are a prominent source of the greenhouse gas methane (CH4), but most measurements are from newer, high producing wells. There are nearly 700,000 marginal “stripper” wells in the US, which produce less than 15 barrels of oil equivalent (BOE) d?1. We made direct measurements of CH4 and volatile organic carbon (VOC) emissions from marginal oil and gas wells in the Appalachian Basin of southeastern Ohio, all producing < 1 BOE d?1. Methane and VOC emissions followed a skewed distribution, with many wells having zero or low emissions and a few wells responsible for the majority of emissions. The average CH4 emission rate from marginal wells was 128 g h?1 (median: 18 g h?1; range: 0– 907 g h?1). Follow-up measurements at five wells indicated high emissions were not episodic. Some wells were emitting all or more of the reported gas produced at each well, or venting gas from wells with no reported gas production. Measurements were made from wellheads only, not tanks, so our estimates may be conservative. Stochastic processes such as maintenance may be the main driver of emissions. Marginal wells are a disproportionate source of CH4 and VOCs relative to oil and gas production. We estimate that oil and gas wells in this lowest production category emit approximately 11% of total annual CH4 from oil and gas production in the EPA greenhouse gas inventory, although they produce about 0.2% of oil and 0.4% of gas in the US per year.

Implications: Low producing marginal wells are the most abundant type of oil and gas well in the United States, and a surprising number of them are venting all or more of their reported produced gas to the atmosphere. This makes marginal wells a disproportionate greenhouse gas emissions source compared to their energy return, and a good target for environmental mitigation.  相似文献   
199.
Regional Environmental Change - The Simien Mountains house several endangered and endemic wildlife species and provide important ecosystem services. Despite its regional environmental importance,...  相似文献   
200.
Drills are an important element of disaster management, helping to increase preparedness and reduce the risk of real‐time failure. Yet, they are not applied systematically to slow‐onset disasters such as a drought, which causes damage that is not instantly apparent and thus does not solicit immediate action. This case study evaluates how drills inform institutional responses to slow‐onset disasters. It spotlights Guatemala, a country where drought has severe impacts on livelihoods and the food security of small farmers. By implementing part of the Ministry of Agriculture, Livestock and Food's institutional response plan for drought, it explores how drills can help to detect issues in emergency response and to foster an institutional focus on improvements in preparedness. The results reveal that drills alone do not trigger institutional improvements if unsupported by a wider strategy that seeks to enhance capacities and protocols. These findings are valuable, however, in making problems transparent and in creating the space for discussion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号