首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
安全科学   3篇
废物处理   2篇
环保管理   1篇
综合类   2篇
基础理论   4篇
污染及防治   5篇
评价与监测   17篇
灾害及防治   1篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   7篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2002年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
11.
This study was conducted to evaluate, using soil columns, the mobilization and redistribution of heavy metals (Zn, Cd, and Pb) among different soil fractions by soluble organic ligands within poultry litter. Uncontaminated soil was amended with Zn, Cd, and Pb to achieve concentration levels of 400, 8, and 200 mg kg−1 soil, respectively. Columns repacked with this amended soil were leached with distilled water, 0.01 M EDTA, 0.01 M CaCl2, or poultry litter extract (PLE) solutions. After leaching, the soil samples in the columns were sequentially extracted for exchangeable (EXC), carbonate (CARB) organic matter (OM), Mn oxide (MNO), Fe oxide (FEO), and residual (RES) fractions. Considerable mobilization of Zn, Cd, and Pb occurred in soil during EDTA leaching. Leaching with PLE and CaCl2 solutions significantly decreased Zn and Cd concentrations in the EXC, CARB, and OM fractions. These solutions significantly decreased Pb concentration in the EXC fraction, while PLE solubilized more Pb from EXC fraction than CaCl2. Thus, the applied poultry litter may change Zn, Cd, and Pb fractions in metal-amended soil and possibly enhance metal mobility.  相似文献   
12.
Acid rain is a serious environmental problem worldwide. In the present study, we investigated the effect of acid rain (1:1 equivalent basis H2SO4:HNO3) at pH values of 2.0, 4.0 and 7.0 on the fractionation of heavy metals (Cd, Cu, Fe, Mn, Ni, Pb and Zn) and major elements (K, Na, Ca, and Mg) in contaminated calcareous soils over a 2084 h period. Heavy metals and major elements in soil samples were fractionated before and after 2084 h kinetic release using a sequential extraction procedure. Before kinetic studies the predominant fractions of K, Na, Ca, Mg, Cd and Ni were mainly associated with carbonate fraction (CARB), whereas Fe, Mn and Zn were associated with the Fe–Mn oxide fraction (Fe–Mn oxide). The highest percentage of Pb and Cu were found in the exchangeable (EXC) and organic matter (OM) fractions, respectively. After kinetic study using different simulated acid rain solutions, the major fractions of heavy metals (expect of Cu) and Na was the same as before release. Upon the application of different acid rain solutions, K and Mg were found dominantly in Fe–Mn oxide fraction, whereas Ca was in the EXC fraction. The results provide valuable information regarding metal mobility and indicated that speciation of metals (Cu and Zn) and major elements in contaminated calcareous soils can be affected by acid rain.  相似文献   
13.
Journal of Polymers and the Environment - The degradation behaviors of an amorphous and a semicrystalline PLA (i.e., aPLA and cPLA) with similar molecular weights are compared at elevated...  相似文献   
14.
Environmental Science and Pollution Research - The correct presentation of the equations in Table 6 footnote is presented in this paper  相似文献   
15.
As interest in sustainability-related issues has increased over recent years, so too has urban sustainability risen to the fore, in academic, practitioner, and policymaking circles alike. Urban sustainability requires a balance between environmental concerns, the economy, and social development in urban areas. However, over the years, there has been an exponential increase in urban density, accompanied by increased economic activity and high levels of consumption, which have hindered urban planning and made the sustainable management of urban areas more difficult. It has therefore become increasingly necessary to combine the interests of the various stakeholders involved in – or affected by – urban planning measures, in order to achieve a balance between their needs, those of the environment and future generations, and the need for economic development. Sustainability evaluation models can in this sense be considered a baseline condition for sustainable development. However, most existing evaluation systems present limitations in terms of criteria identification and the calculation of the respective trade-offs. To address these issues, the current study aims to combine cognitive mapping and the Analytic Hierarchy Process (AHP) to prioritize the determinants of sustainable development in urban areas. The advantages and limitations of our proposal are also analyzed.  相似文献   
16.
Fractionation of soil phosphorus (P) can provide useful information for assessing the risk of soil P as the potential sources of eutrophication in aquatic systems. Little information exists on P forms in paddy soils of Isfahan Province in central Iran, where P fertilizers have been continuously applied for at least 45 years. The objectives of this study were to investigate concentrations and proportions of P forms in paddy soils and correlate the content of P forms with basic soil properties. Soil samples from three paddy sites were obtained, and soil P forms were determined by a modified Hedley fraction method. Results show that the total P concentrations ranged from 288 to 850 mg kg?1 and were enriched in site 1. In all sites, the rank order of P fractions was HCl-P (CARB-P)?>?residual-P (RES-P)?>?NaOH-P (Fe-Al-P)?>?KCl-P (EXCH-P), indicating that Ca compounds are the main soil components contributing to P retention in these calcareous paddy soils. The EXCH-P represented on average?<?1 % of the total P, while the Fe-Al-P ranged 3.3–18 %. The CARB-P showed considerable contribution (63.6–85.6 %) to the total P. The Pearson correlation matrix indicated that Fe-Al-P only was positively correlated with total P, but did not show any significant correlations with other soil geochemical properties. Calcium-bound P fraction was significantly correlated with the clay, silt, cation exchange capacity, and total P.  相似文献   
17.
Geostatistical methods are one of the advanced techniques to interpolate groundwater quality data. Geostatistical interpolation techniques employ both the mathematical and the statistical properties of the measured points. Compiling the data distribution on spatial and temporal domain is of crucial importance in order to evaluate its quality and safety. The main purpose of this paper is to assess groundwater quality of Arak plain, Iran, by an unbiased interpolated method so called Kriging. Therefore, seven quality variables of Arak plain aquifer including TDS, SAR, EC, Na+, TH, Cl?, and SO4 2? have been analyzed, studied, and interpreted statistically and geostatistically. Utilized data in this study were collected from 97 water well samples in Arak plain, in 2012. After normalizing data, variogram as a geostatistical tool for defining spatial regression was calculated and experimental variograms have been plotted by GS+ software, then the best theoretical model was fitted to each variogram based on minimum RSS error. Cross validation was used to determine the accuracy of the estimated data. The uncertainty of the method could be well assessed via this method since the method not only gave the average error (around 0 in this study) but also gave the standard deviation of the estimations. Therefore, more than 3800 points were estimated by ordinary Kriging algorithm in places which have not been sampled. Finally, estimation maps of groundwater quality were prepared and map of estimation variance, EV, has been presented to assess the quality of estimation in each estimated point. Results showed that the Kriging method is more accurate than the traditional interpolation algorithms not honoring the spatial properties of the database.  相似文献   
18.
19.
20.
Chemical properties and pollution of water resources were studied in the Chah basin that is located in the Hamadan province, western Iran. Water quality was characterized according to its major constituents and the geological features of the area. Chemical analysis results indicate that groundwaters show wide concentration ranges in major inorganic ions, reflecting complex hydrochemical processes. Groundwater in the studied area is, for the most part, weakly to moderately mineralized and dominated by the calcium (Ca(2+)) and bicarbonate (HCO3-) ions. Within the basin, three different hydrogeochemical facies have been identified: Ca-HCO(3), Ca-SO(4) and Mg-HCO(3). The predominant water type of groundwater samples is the Ca-HCO(3) facies in the recharge area and has a tendency toward Mg-HCO(3) and Ca-SO(4) facies along the direction of water flow. The samples were classified into four groups based on chloride (Cl(-)) and nitrate (NO3-) concentrations and the processes that control water chemistry has been discussed. The results explained the importance of cation exchange, mineral weathering, and anthropogenic activities on groundwater chemistry. It was indicated that cation exchange and Cl-salt inputs are the major process controlling the water chemistry of the low Cl(-) and high [NO3-] (group 2) and high Cl(-) and [NO3-] (group 4). Groundwaters low in NO3- and high in Cl(-) (group 3) and low in NO3- and Cl(-) (group 1) are mainly affected by cation exchange and mineral dissolution. Pollution of groundwaters appeared to be affected by the application of fertilizers, irrigation practice, and solubility of mineral phases and discharge of domestic sewage. Measuring and predicting the mass loading of pollutant to groundwater from specific agricultural systems seems to be useful aids in controlling pollutions in groundwater.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号