首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10129篇
  免费   12篇
  国内免费   12篇
安全科学   42篇
废物处理   794篇
环保管理   1285篇
综合类   1036篇
基础理论   3188篇
污染及防治   1847篇
评价与监测   1032篇
社会与环境   919篇
灾害及防治   10篇
  2023年   2篇
  2022年   6篇
  2021年   12篇
  2020年   9篇
  2019年   11篇
  2018年   1479篇
  2017年   1381篇
  2016年   1204篇
  2015年   131篇
  2014年   34篇
  2013年   71篇
  2012年   471篇
  2011年   1369篇
  2010年   705篇
  2009年   619篇
  2008年   901篇
  2007年   1252篇
  2006年   32篇
  2005年   43篇
  2004年   51篇
  2003年   84篇
  2002年   116篇
  2001年   20篇
  2000年   18篇
  1999年   4篇
  1998年   17篇
  1997年   5篇
  1996年   5篇
  1995年   8篇
  1994年   7篇
  1993年   3篇
  1992年   6篇
  1991年   4篇
  1989年   3篇
  1987年   5篇
  1986年   2篇
  1984年   12篇
  1983年   14篇
  1982年   4篇
  1981年   8篇
  1977年   2篇
  1976年   2篇
  1961年   2篇
  1957年   1篇
  1956年   2篇
  1955年   3篇
  1953年   1篇
  1949年   1篇
  1947年   1篇
  1935年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
Little attention has been paid to the impact of wastewater generated by mining activities on fluoride. In this study, we evaluated the hematology responses of common South American toad Rhinella arenarum inhabiting natural and artificial environments associated with a fluorite mine from central Argentina. We analyzed three sampling stations associated with the fluorite mine: (I) Los Cerros Negros stream (CN), which runs on granitic rock with a high fluorite content; (II) Los Vallecitos stream (LV), which runs on metamorphic rock with low fluorite content; and (III) artificial decantation ponds (DP) containing sediments produced by fluorite flotation process. We calculated frequencies of micronuclei, erythrocyte nuclear abnormalities, mitosis, and immature erythrocytes. In addition, we performed a differential leukocyte count and determined neutrophils/lymphocyte ratio as a stress response estimator. We found high micronucleus (MN) and erythrocyte nuclear abnormality (ENA) frequencies in DP and CN but low frequencies in LV. The neutrophil/lymphocyte ratio was different among sites, with a significant increase in individuals from DP. Values registered in DP could be caused by exposure to mixture of compounds registered in dams that hold wastewater, while high values registered in CN stream might be due to natural concentrations of fluoride. Our results suggest that blood is an effective and non-destructive sensitive indicator for monitoring genotoxic agents in freshwater ecosystems.  相似文献   
142.
During ovary maturation of crabs, vitellogenin (Vg), a precursor molecule of vitellin (Vn) needed for embryogenesis, can be produced in large quantities in the hepatopancreas and then transported to the ovary by the hemolymph. In the present study, effects of Cd on Vg accumulation in the hepatopancreas and Vg transportation of the freshwater crab Sinopotamon henanense were investigated. We also studied the impacts of Cd on the mRNA expression of genes involved in energy metabolism, protein metabolism, and metallothionein (MT) and glutathione (GSH) synthesis. After Cd treatment, the Vg concentration and the Vg mRNA expression in the hepatopancreas were downregulated. Pearson’s correlation coefficient showed that the Vg level in the hepatopancreas correlated positively with those of the ovary and hemolymph (correlation coefficients 0.844 and 0.749, respectively), suggesting that the Vg transport from the hepatopancreas to the ovary can be impaired by Cd. The levels of carbohydrate and protein in the hepatopancreas of Cd-exposed crabs were decreased, and an inhibited protein metabolism was also observed. Energy production related isocitrate dehydrogenase and cytochrome C oxidase mRNA expressions, and MT and GSH synthesis increased after 10 days of Cd treatment and decreased after 20 days. Cd also caused a time-dependent upregulation of malondialdehyde. Our findings showed that Cd decreased Vg accumulation in the hepatopancreas due to partially excessive energy consumption and an activated defense system in the hepatopancreas, suggesting a possible regulatory mechanism in S. henanense which is the competitive advantage of energy reserves in metabolic Cd stress responses over the high-energy flux during vitellogenesis to ensure a continuous supply of metabolic energy. Moreover, the damage of Vg accumulation in the hepatopancreas caused by Cd could lead to an insufficient accumulation of Vn in the ovary and cause a retardation of oocyte development.  相似文献   
143.
Methane (CH4) removal in the presence of ethanol vapors was performed by a stone-based bed and a hybrid packing biofilter in parallel. In the absence of ethanol, a methane removal efficiency of 55 ± 1% was obtained for both biofilters under similar CH4 inlet load (IL) of 13 ± 0.5 gCH4 m?3 h?1 and an empty bed residence time (EBRT) of 6 min. The results proved the key role of the bottom section in both biofilters for simultaneous removal of CH4 and ethanol. Ethanol vapor was completely eliminated in the bottom sections for an ethanol IL variation between 1 and 11 gethanol m?3 h?1. Ethanol absorption and accumulation in the biofilm phase as well as ethanol conversion to CO2 contributed to ethanol removal efficiency of 100%. In the presence of ethanol vapor, CO2 productions in the bottom section increased almost fourfold in both biofilters. The ethanol concentration in the leachate of the biofilter exceeding 2200 gethanol m?3 leachate in both biofilters demonstrated the excess accumulation of ethanol in the biofilm phase. The biofilters responded quickly to an ethanol shock load followed by a starvation with 20% decrease of their performance. The return to normal operations in both biofilters after the transient conditions took less than 5 days. Unlike the hybrid packing biofilter, excess pressure drop (up to 1.9 cmH2O m?1) was an important concern for the stone bed biofilter. The biomass accumulation in the bottom section of the stone bed biofilter contributed to 80% of the total pressure drop. However, the 14-day starvation reduced the pressure drop to 0.25 cmH2O m?1.  相似文献   
144.
In this era of globalization, various products and technologies are being developed by the industries. While resources and energy are utilized from processes, wastes are being excreted through water streams, air, and ground. Without realizing it, environmental pollutions increase as the country develops. Effective technology is desired to create green factories that are able to overcome these issues. Wastewater is classified as the water coming from domestic or industrial sources. Wastewater treatment includes physical, chemical, and biological treatment processes. Aerobic and anaerobic processes are utilized in biological treatment approach. However, the current biological approaches emit greenhouse gases (GHGs), methane, and carbon dioxide that contribute to global warming. Microalgae can be the alternative to treating wastewater as it is able to consume nutrients from wastewater loading and fix CO2 as it undergoes photosynthesis. The utilization of microalgae in the system will directly reduce GHG emissions with low operating cost within a short period of time. The aim of this review is to discuss the uses of native microalgae species in palm oil mill effluent (POME) and flue gas remediation. In addition, the discussion on the optimal microalgae cultivation parameter selection is included as this is significant for effective microalgae-based treatment operations.  相似文献   
145.
The complex bio-geochemistry of soil allows pollutant to persist for a longer period of time which further decreased the fertility and natural composition of land. Nickel, an inorganic pollutant, coming from a wide range of industrial and manufacturing units possesses serious threat to soil degradation and crop productivity around the world. The present study was carried to evaluate the combined role of microwave irradiation (MR) and citric acid (CA) on the phytoextraction potential of Brassica napus L. under Ni stress. An initial seed germination test was conducted to select effective time scale of MR exposure. Highest seed germination was observed at exposure of 2.45 GHz frequency for 30 s. Healthy seeds of B. napus L. genotype Faisal Canola (RBN-03060) treated with MR at 2.45 GHz for 30 s were sown in plastic pots filled with 5 kg of soil. Nickel and CA applied exogenously in solution form with different combinations to both MR-treated and untreated B. napus plants. The MR-treated plants showed higher growth, biomass, photosynthetic pigments (Chl a, b, total, and carotenoids) and activities of antioxidant enzymes (SOD, POD, APX, CAT) as compared to untreated plants who showed higher reactive oxygen species (MDA, H2O2) and electrolyte leakage. Increasing Ni concentration significantly decreased the physiological and biochemical attributes of B. napus both in MR-treated and untreated plants. The addition of CA alleviated Ni-induced toxic effects in both MR-treated and untreated plants by improving antioxidant defense system. The degree of Ni stress mitigation was higher in MR-treated plants. The Ni concentration was higher in root, stem, and leaves of MR-treated plants under CA application as compared to untreated plants. The present study concluded that seeds treated with MR before sowing showed higher accumulation and concentration of Ni from soil, and this phenomenon boosted with the application of CA.  相似文献   
146.
Plastic waste is a source of organic contaminants such as hexabromocyclododecanes (HBCDs). HBCDs have been found to cause developmental and reproductive toxicity; it is important to investigate the occurrence and metabolization of HBCDs in the soil environments with plastic waste contamination. This work analyzed HBCDs and their metabolites in soil and plant samples collected from Xinle and Dingzhou—the major plastic waste recycling centers in North China. Results showed that total HBCD concentrations in soils followed the order: plastic waste treatment site (11.0–624 ng/g) > roadside (2.96–85.4 ng/g) ≥ farmland (8.69–55.5 ng/g). HBCDs were detected in all the plant samples with total concentrations ranging from 3.47 to 23.4 ng/g. γ-HBCD was the dominant congener in soils, while α-HBCD was preferentially accumulated in plants. Compositions of HBCD isomers in soils and plants were significantly different (P < 0.05) among sampling sites and among plant species. HBCDs in farmland soil and all plant samples exhibited high enantio-selectivity based on the enantiomeric fractions (EFs). Furthermore, metabolites of pentabromocyclododecenes (PBCDEs) were frequently identified in soils, and mono-OH-HBCDs were the most common ones in plants. This study for the first time provides evidences of HBCD contamination in the soil-plant system caused by plastic waste, their stereo-selectivity, and metabolization behavior, improving our understanding of the environmental behavior and fate of HBCDs.  相似文献   
147.
To better understand the Hg(II) adsorption by some typical soils and explore the insights about the binding between Hg(II) and soils, a batch of adsorption and characteristic experiments was conducted. Results showed that Hg(II) adsorption was well fitted by the Langmuir and Freundlich. The maximum adsorption amount of cinnamon soil (2094.73 mg kg?1) was nearly tenfold as much as that of saline soil (229.49 mg kg?1). The specific adsorption of Hg(II) on four soil surface was confirmed by X-ray photoelectron spectroscopy (XPS) owing to the change of elemental bonding energy after adsorption. However, the specific adsorption is mainly derived from some substances in the soil. Fourier transform infrared spectroscopy (FTIR) demonstrated that multiple oxygen-containing functional groups (O–H, C=O, and C–O) were involved in the Hg(II) adsorption, and the content of oxygen functional groups determined the adsorption capacity of the soil. Meanwhile, scanning electron microscopy combined with X-ray energy dispersive spectrometer (SEM–EDS) more intuitive revealed the binding of mercury to organic matter, metal oxides, and clay minerals in the soil and fundamentally confirmed the results of XPS and FTIR to further elucidate adsorptive phenomena. The complexation with oxygen-containing functional groups and the precipitation with minerals were likely the primary mechanisms for Hg(II) adsorption on several typical soils. This study is critical in understanding the transportation of Hg(II) in different soils and discovering potential preventative measures.  相似文献   
148.
The Three Gorges Dam in China is the world’s largest dam. Upon its completion in 2003, the Three Gorges Reservoir (TGR) became the largest reservoir in China and plays an important role in economic development and national drinking water safety. However, as a sink and source of heavy metals, there is a lack of continuous and comparative data on heavy metal pollution in sediments. This study reviewed all available literatures published on heavy metals in TGR sediments and further provided a comprehensive assessment of the pollution tendency of these heavy metals. The results showed that heavy metal concentrations in TGR sediments varied spatially and temporally. Temporal variations indicated that Hg in tributaries, as well as As, Cd, Cr, Cu, Ni, Pb, and Zn in the mainstream, exhibited a higher probability to exceed background values after the impoundment of TGR. Pollution assessments by contamination factor, geoaccumulation index, and potential ecological risk were similar. High Cd and Hg concentrations in both the mainstream and tributaries are a cause for much concern. However, sediment quality guidelines produced different results, as most previous studies adopted different sampling and measurement strategies. The data inconsistencies and lack of continuity regarding the reservoir confirm the need for a continuous monitoring network and the development of quality criteria relevant to the sediments of the TGR in the future.  相似文献   
149.
Environmental degradation by industrial and other developmental activities is alarming for imperative environmental management by process advancements of production. Pulp and paper mills are now focusing on using nonwood-based raw materials to protect forest resources. In present study, rice straw was utilized for pulp production as it is easily and abundantly available as well as rich in carbohydrates (cellulose and hemicelluloses). Soda-anthraquinone method was used for pulp production as it is widely accepted for agro residues. Bleaching process during paper production is the chief source of wastewater generation. The chlorophenolic compounds generated during bleaching are highly toxic, mutagenic, and bioaccumulative in nature. The objectives of study were to use oxygen delignification (ODL) stage prior to elemental chlorine-free (ECF) bleaching to reduce wastewater load and to study its impact on bleached pulp characteristics. ODL stage prior to ECF bleaching improved the optical properties of pulp in comparison to only ECF bleaching. When ODL stage was incorporated prior to bleaching, the tensile index and folding endurance of the pulp were found to be 56.6 ± 1.5 Nm/g and 140, respectively, very high in comparison to ECF alone. A potential reduction of 51, 57, 43, and 53% in BOD3, COD, color, and AOX, respectively was observed on adding the ODL stage compared to ECF only. Generation of chlorophenolic compounds was reduced significantly. Incorporation of ODL stage prior to bleaching was found to be highly promising for reducing the toxicity of bleaching effluents and may lead to better management of nearby water resources.
Graphical abstract ?
  相似文献   
150.
As a primary factor responsible for lake eutrophication, a deeper understanding of the phosphorus (P) composition and its turnover in sediment is urgently needed. In this study, P species in surface sediments from a Chinese large eutrophic lake (Lake Taihu) were characterized by traditional fractionation and 31P nuclear magnetic resonance (NMR) spectroscopy, and their contributions to the overlying water were also discussed. Fractionation results show that NaOH-P predominated in the algal-dominated zone, accounting for 60.1% to total P in Zhushan Bay. Whereas, refractory fractions including HCl-P and residual-P were the main P burial phases in the macrophyte-dominated zone, the center and lakeshore. Recovery rates of the total P and organic P were greatly improved by using a modified single-step extraction of NaOH-EDTA, ranging from 22.6 to 66.1% and from 15.0 to 54.0%. Ortho-P, monoester-P, and pyro-P are identified as the major P components in the NaOH-EDTA extracts by 31P NMR analysis. Trace amount of DNA-P appeared only in sediments from algal- and macrophyte-dominated zones, ascribing to its biological origin. The relative content of ortho-P is the highest in the algal-dominated zone, while the biogenic P including ester-P and pyro-P is the highest in the macrophyte-dominated zone. Moreover, ortho-P and pyro-P correlated positively with TP and chlorophyll a in the overlying water, whereas only significant relationships were found between monoester-P, biogenic P, and chlorophyll a. These discrepancies imply that inorganic P, mainly ortho-P, plays a vital role in sustaining the trophic level of water body and algal bloom, while biogenic P makes a minor contribution to phytoplankton growth. This conclusion was supported by the results of high proportion of biogenic P in algae, aquatic macrophytes, and suspended particulate from the published literature. This study has significant implication for better understanding of the biogeochemical cycling of endogenous P and its role in affecting lake eutrophication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号