首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   2篇
安全科学   7篇
废物处理   5篇
环保管理   15篇
综合类   18篇
基础理论   31篇
环境理论   1篇
污染及防治   34篇
评价与监测   7篇
社会与环境   1篇
  2022年   4篇
  2020年   4篇
  2019年   3篇
  2018年   1篇
  2017年   5篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   4篇
  2010年   4篇
  2009年   5篇
  2008年   4篇
  2007年   8篇
  2006年   7篇
  2005年   6篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1981年   2篇
  1978年   1篇
  1973年   2篇
  1970年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
111.
The importance of external and internal population processes in determining variation in reproductive output and variation in population size were quantified with model simulations for open populations of the sequentially hermaphroditic limpet Patella vulgata using field data from the Isle of Man and South West Ireland. Cross-correlation analyses of model outputs and elasticity analyses show that population dynamics are dominated by the effects of large females, and that recruitment adds little to reproductive output. However, populations experiencing low but highly variable recruitment appear male limited and recruitment pulses carrying young males into the population are correlated to reproductive output with a 2–5-year lag. We conclude that pulses in recruitment can be a major structuring force in these limpet populations, but site-specific post-recruitment processes will determine the relative importance of recruitment to population dynamics and the lag between recruitment and reproductive output.  相似文献   
112.
The Cairngorms in north-east Scotland is remote from pollutant sources although it currently receives ca. 10 kg ha1 yr1 S and ca. 11 kg ha1 yr1 N deposition from the atmosphere.In 1955, 15 lochs (lakes) at a range of altitudes were sampled and analysed for major ion concentrations. A new survey of these and an additional 23 lochs and their catchment soils was conducted in 1999 to determine the impact of acid deposition, and the changes in loch chemistry since the 1955 survey. The bedrock geology of this region has a strong influence on the loch chemistry. Surface waters were generally more acidic in high altitude areas due to predominantly poorly buffered, thin alpine soils developed on granitic parent material (mean acid neutralising capacity (ANC) for 23 lochs = 30 eq L1). At lower altitudes where the geology is dominated by Dalradian metamorphic rocks surface waters are comparatively base rich and have higher ANC (mean ANC for 15 lochs = 157 eq L1). Surface water nitrate concentrations show a negative relationship with soil C:N status, in that higher nitrate only occurs at low soil C:N ratios. A comparison of data for 1955 and 1999 shows that sulphate concentrations are significantly lower (67.8 and 47.5 eq L1, respectively), and pH has improved (pH 5.6 and 5.9) in response to decreased S deposition since the mid 1970s. However, mean nitrate concentrations were found to increase from 2.48 >eq L1 in 1955 to 5.65 eq L1 in 1999. Differences in the sampling and laboratory methods from 1955 and 1999 are acknowledged in the interpretation of data.  相似文献   
113.
We reconstruct the pre-acidification pH of the Round Loch of Glenhead for 1800 AD using three diatom-pH transfer functions and a diatom-cladocera modern analogue technique (MAT), and compare these palaeo-data with hindcast data for the loch using the dynamic catchment acidification model MAGIC. We assess the accuracy of the transfer functions by comparing pH inferences from contemporary sediment and sediment trap diatom samples from the lake with measured pH from the UK Acid Waters Monitoring Network. The results from the transfer functions estimate the pH in 1800 to have been between 5.5. and 5.7, the MAT approach estimates pH at 5.8 and the MAGIC hindcast (for 1850) is pH 6.1. Whilst we have no independent method of assessing which of these values is most accurate, the disagreement between the two approaches indicates that further work is needed to resolve the discrepancies.  相似文献   
114.
Land application of poultry litter can provide essential plant nutrients for crop production, but ammonia (NH(3)) volatilization from the litter can be detrimental to the environment. A multiseason study was conducted to quantify NH(3) volatilization rates from surface-applied poultry litter under no-till and paraplowed conservation tillage managements. Litter was applied to supply 90 to 140 kg N ha(-1). Evaluation of NH(3) volatilization was determined using gas concentrations and the flux-gradient gas transport technique using the momentum balance transport coefficient. Ammonia fluxes ranged from 3.3 to 24% of the total N applied during the winter and summer, respectively. Ammonia volatilization was rapid immediately after litter application and stopped within 7 to 8 d. Precipitation of 17 mm essentially halted volatilization, probably by transporting litter N into the soil matrix. Application of poultry to conservation-tilled cropland immediately before rainfall events would reduce N losses to the atmosphere but could also increase NO(3) leaching and runoff to streams and rivers.  相似文献   
115.
116.
Man can leave a geochemical imprint on an archaeological site in several ways. In common with other components of the biosphere, there is a selective enrichment of elements in his body tissues which, upon death and burial, may lead to detectable anomalies. Of elements concentrated in this way P is the most obvious, but Sn could be another possibility worth further investigation. There has been particular geochemical impact due to the progressive use of such metals as Ag, Au, Cu, Pb and Zn during successive cultural stages. Anomalies may thus arise due to recognisable transported ore, slags or artefacts, although there has also often been cryptic redispersion of the metals within a site. Charcoal is one of the commoner finds during excavations, and it has the ability to adsorb and concentrate metals progressively from percolating solutions since the time of its burial: with careful interpretation its analysis may thus provide a valuable historical record, as is illustrated by material from several sites in North Wales. Providing care is taken to interpret results in their particular geochemical and pedochemical context, trace element analysis may thus offer a useful insight into the history of man's activities in an archaeological site.This paper was presented at the Sixth European Conference of SEGH in Bradford, April 13, 1988.)  相似文献   
117.
Forest ecosystems represent the dominant form of land cover in the northeastern United States and are heavily relied upon by the region’s residents as a source of fuel, fiber, structural materials, clean water, economic vitality, and recreational opportunities. Although predicted changes in climate have important implications for a number of ecosystem processes, our present understanding of their long-term effects is poor. In this study, we used the PnET-CN model of forest carbon (C), nitrogen (N) and water cycling to evaluate the effects of predicted changes in climate and atmospheric carbon dioxide (CO2) on forest growth, C exchange, water runoff, and nitrate ( $ {\text{NO}}^{ - }_{3} $ ) leaching at five forest research sites across the northeastern U.S. We used four sets of statistically downscaled climate predictions from two general circulation models (the Hadley Centre Coupled Model, version 3 and the Parallel Climate Model) and two scenarios of future CO2 concentrations. A series of model experiments was conducted to examine the effects of future temperature, precipitation, CO2, and various assumptions regarding the physiological response of forests to these changes. Results indicate a wide range of predicted future growth rates. Increased growth was predicted across deciduous sites under most future conditions, while growth declines were predicted for spruce forests under the warmest scenarios and in some deciduous forests when CO2 fertilization effects were absent. Both climate and rising CO2 contributed to predicted changes, but their relative importance shifted from CO2-dominated to climate-dominated from the first to second half of the twenty-first century. Predicted runoff ranged from no change to a slight decrease, depending on future precipitation and assumptions about stomatal response to CO2. Nitrate leaching exhibited variable responses, but was highest under conditions that imposed plant stress with no physiological effects of CO2. Although there are considerable uncertainties surrounding predicted responses to climate change, these results provide a range of possible outcomes and highlight interactions among processes that are likely to be important. Such information can be useful to scientists and land managers as they plan on means of examining and responding to the effects of climate change.  相似文献   
118.
The term conservation technology is applied widely and loosely to any technology connected to conservation. This overly broad understanding can lead to confusion around the actual mechanisms of conservation in a technological system, which can result in neglect and underdevelopment of the human dimensions of conservation technology. Ultimately, this hinders its effectiveness as technological fixes for conservation problems. Through a process of concept mapping based on key case studies and literature, I devised precise definitions of marine conservation technology and technological marine conservation system. Concerns about the use of marine conservation technologies included unintended consequences, halfway technologies that address the symptoms but not the causes of problems, and misguided techno-optimism (i.e., technology is a panacea that can solve any problem). Technology and technological systems can have power, politics, and culture, and these characteristics can influence the contextual fit of a technology, requiring that technology be thoughtfully created or adapted to the circumstances in which it will be used. Power, politics, and culture inherent in technology can also influence the distribution of conservation risks and benefits and potentially widen gaps in wealth, privilege, opportunities, and justice. Addressing these concerns can potentially be achieved through the better integration of social sciences in marine conservation technology and technological marine conservation system design and development and the application of the social-ecological-technological systems framework. This framework melds key concepts from the socioecological systems framework and science and technology studies. It recognizes as and elevates technology to be a central actor that can shape societies and the natural world. Such a framework incorporates broader understanding, so that the values and concerns of society are more effectively addressed in the creation and implementation of marine conservation technologies and technological marine conservation systems.  相似文献   
119.
The COVID-19 pandemic has had an enormous impact on almost all aspects of human society and endeavor; the natural world and its conservation have not been spared. Through a process of expert consultation, we identified and categorized, into 19 themes and 70 subthemes, the ways in which biodiversity and its conservation have been or could be affected by the pandemic globally. Nearly 60% of the effects have been broadly negative. Subsequently, we created a compendium of all themes and subthemes, each with explanatory text, and in August 2020 a diverse group of experienced conservationists with expertise from across sectors and geographies assessed each subtheme for its likely impact on biodiversity conservation globally. The 9 subthemes ranked highest all have a negative impact. These were, in rank order, governments sidelining the environment during their economic recovery, reduced wildlife-based tourism income, increased habitat destruction, reduced government funding, increased plastic and other solid waste pollution, weakening of nature-friendly regulations and their enforcement, increased illegal harvest of wild animals, reduced philanthropy, and threats to survival of conservation organizations. In combination, these impacts present a worrying future of increased threats to biodiversity conservation but reduced capacity to counter them. The highest ranking positive impact, at 10, was the beneficial impact of wildlife-trade restrictions. More optimistically, among impacts ranked 11-20, 6 were positive and 4 were negative. We hope our assessment will draw attention to the impacts of the pandemic and, thus, improve the conservation community's ability to respond to such threats in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号