首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   2篇
安全科学   7篇
废物处理   5篇
环保管理   16篇
综合类   18篇
基础理论   31篇
环境理论   1篇
污染及防治   34篇
评价与监测   7篇
社会与环境   1篇
  2022年   4篇
  2020年   4篇
  2019年   3篇
  2018年   1篇
  2017年   5篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   4篇
  2010年   4篇
  2009年   5篇
  2008年   4篇
  2007年   8篇
  2006年   7篇
  2005年   6篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1981年   2篇
  1978年   1篇
  1973年   2篇
  1970年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
51.
Analysis of water chemistry data from 15 years of monitoring at 22 acid-sensitive lakes and streams in the UK reveals coherent national chemical trends indicative of recovery from acidification. Excess sulphate and base cations exhibit significant decline, often accompanied by an increase in an alkalinity-based determination of acid neutralising capacity (AB-ANC) and, at fewer sites, a decline in hydrogen and labile aluminium. Acid neutralising capacity determined by "charge-balance" (CB-ANC) exhibits few trends, possibly due to compound errors associated with its determination. Trend slopes in excess sulphate correlate with those for base cations, hydrogen ion and AB-ANC, with between-site variability linked to catchment hydrology, sea-salt inputs and forestry. Nitrate concentrations have not changed significantly but show high sensitivity to varying climate. Trends in AB-ANC are influenced by significant increases in dissolved organic carbon, the cause of which it is vital to establish before trends in the former can definitively be attributed to decreasing acidic deposition.  相似文献   
52.
Protocols have been developed and applied for the generation of aerosols that are likely to be comparable to those encountered in field settings for the calibration of easily transportable/portable real-time particle monitors. Aerosols generated were simulated environmental tobacco smoke, cedar wood smoke, cooking oil fumes, and propane stove particles. The time-integrated responses of three nephelometers and a monitor for particle-bound polynuclear aromatic hydrocarbons (PAH) were compared with gravimetric respirable suspended particulate matter (RSP) in a controlled-atmosphere chamber. In general, the monitor responses increased linearly with increasing mass concentration. However, the two monitors that reported mass per volume concentrations tended to overreport the actual RSP concentrations by factors up to 4.4. The real-time PAH monitor did not respond to cooking oil fumes, indicative of little PAH being present in the aerosol. One of the monitors that has been used in a variety of studies reported in the literature (DustTrak) was collocated with gravimetric RSP samplers in several hospitality venues in the Louisville, KY, area. Field studies indicated that the units overreported actual RSP concentrations by factors of 2.6-3.1, depending on whether the sampling was conducted in the nonsmoking or smoking sections of the facilities.  相似文献   
53.
54.
55.
Arenas F  Sánchez I  Hawkins SJ  Jenkins SR 《Ecology》2006,87(11):2851-2861
The emergence of the biodiversity-ecosystem functioning debate in the last decade has renewed interest in understanding why some communities are more easily invaded than others and how the impact of invasion on recipient communities and ecosystems varies. To date most of the research on invasibility has focused on taxonomic diversity, i.e., species richness. However, functional diversity of the communities should be more relevant for the resistance of the community to invasions, as the extent of functional differences among the species in an assemblage is a major determinant of ecosystem processes. Although coastal marine habitats are among the most heavily invaded ecosystems, studies on community invasibility and vulnerability in these habitats are scarce. We carried out a manipulative field experiment in tide pools of the rocky intertidal to test the hypothesis that increasing functional richness reduces the susceptibility of macroalgal communities to invasion. We selected a priori four functional groups on the basis of previous knowledge of local species characteristics: encrusting, turf, subcanopy, and canopy species. Synthetic assemblages containing one, two, three, or four different functional groups of seaweeds were created, and invasion by native species was monitored over an eight-month period. Cover and resource availability in the assemblages with only one functional group showed different patterns in the use of space and light, confirming true functional differences among our groups. Experimental results showed that the identity of functional groups was more important than functional richness in determining the ability of macroalgal communities to resist invasion and that resistance to invasion was resource-mediated.  相似文献   
56.
Jenkins DG 《Ecology》2006,87(6):1523-1531
Alternative models of community assembly emphasize regional, stochastic, dispersal-based processes or local, deterministic, niche-based processes. Community ecology's historical focus on local processes implicitly assumes that local processes surpass regional processes over time or across space to derive nonrandom metacommunity structure (i.e., a quorum effect). Quorum effects are expected late in succession among nearby sites, whereas quorum effects are not expected early in succession among distant sites. I conducted a meta-analysis of zooplankton data sets encompassing time scales of one to thousands of years and spatial scales of <1 m to thousands of kilometers. Species co-occurrence analyses statistically evaluated presence/absence patterns relative to random patterns obtained with Monte Carlo null models. A series of weighted analyses was conducted and alternative randomization algorithms and null models were evaluated. Most zooplankton metacommunities were randomly structured in unweighted analyses, and the distribution of significant structure did not follow quorum effect predictions. Weighted analyses (e.g., by habitat area) revealed significant, nonrandom structure in most zooplankton metacommunities, but the distribution of significant structure still did not adhere well to quorum effect predictions. Finally, additional weighting for study scale (number of sites) nullified most significant area-weighted structure, and again, the distribution of significant structure did not follow quorum effect predictions. Overall, a quorum effect was not supported, perhaps related to zooplankton life histories and energetics and/or the quorum effect itself. Results at the presence/absence level of resolution indicated that local processes did not generally override regional processes over time or across space to drive community structure. A full integration of dispersal- and niche-based concepts in metacommunity dynamics will be most fruitful for unraveling community assembly. Species co-occurrence analyses were scale dependent (habitat area and study size). Future analyses should use weights for important factors (e.g., habitat area), and meta-analyses should include study scale as an additional factor contributing to apparent patterns.  相似文献   
57.
58.
Researchers in behavioral ecology are increasingly turning to research methods that allow the simultaneous evaluation of hypotheses. This approach has great potential to increase our scientific understanding, but researchers interested in the approach should be aware of its long and somewhat contentious history. Also, prior to implementing multiple hypothesis evaluation, researchers should be aware of the importance of clearly specifying a priori hypotheses. This is one of the more difficult aspects of research based on multiple hypothesis evaluation, and we outline and provide examples of three approaches for doing so. Finally, multiple hypothesis evaluation has some limitations important to behavioral ecologists; we discuss two practical issues behavioral ecologists are likely to face.  相似文献   
59.
Rice is elevated in arsenic (As) compared to other staple grains. The Bangladeshi community living in the United Kingdom (UK) has a ca. 30-fold higher consumption of rice than white Caucasians. In order to assess the impact of this difference in rice consumption, urinary arsenicals of 49 volunteers in the UK (Bangladeshi n = 37; white Caucasians n = 12) were monitored along with dietary habits. Total urinary arsenic (As(t)) and speciation analysis for dimethylarsinic acid (DMA), monomethylarsonic acid (MA) and inorganic arsenic (iAs) was conducted. Although no significant difference was found for As(t) (median: Bangladeshis 28.4 μg L(-1)) and white Caucasians (20.6 μg L(-1)), the sum of medians of DMA, MA and iAs for the Bangladeshi group was found to be over 3-fold higher (17.9 μg L(-1)) than for the Caucasians (3.50 μg L(-1)). Urinary DMA was significantly higher (p < 0.001) in the UK Bangladeshis (median: 16.9 μg DMA L(-1)) than in the white Caucasians (3.16 μg DMA L(-1)) as well as iAs (p < 0.001) with a median of 0.630 μg iAs L(-1) for Bangladeshi and 0.250 μg iAs L(-1) for Caucasians. Cationic compounds were significantly lower in the Bangladeshis (2.93 μg L(-1)) than in Caucasians (14.9 μg L(-1)). The higher DMA and iAs levels in the Bangladeshis are mainly the result of higher rice consumption: arsenic is speciated in rice as both iAs and DMA, and iAs can be metabolized, through MA, to DMA by humans. This study shows that a higher dietary intake of DMA alters the DMA/MA ratio in urine. Consequently, DMA/MA ratio as an indication of methylation capacity in populations consuming large quantities of rice should be applied with caution since variation in the quantity and type of rice eaten may alter this ratio.  相似文献   
60.
Diel swimming behaviors of juvenile anchovies (Anchoa spp.) were observed using stationary hydroacoustics and synoptic physicochemical and zooplankton profiles during four unique water quality scenarios in the Neuse River Estuary, NC, USA. Vertical distribution of fish was restricted to waters with DO greater than 2.5 mg O2 l−1, except when greater than 70% of the water column was hypoxic and a subset of fish were occupying water with 1 mg O2 l−1. We made the prediction that an individual fish would select a swim speed that would maximize net energy gain given the abundance and availability of prey in the normoxic waters. During the day, fish adopted swim speeds between 7 and 8.8 bl s−1 that were near the theoretical optimum speeds between 7.0 and 8.0 bl s−1. An exception was found during severe hypoxia, when fish were swimming at 60% above the optimum speed (observed speed = 10.6 bl s−1, expected = 6.4 bl s−1). The anchovy is a visual planktivore; therefore, we expected a diel activity pattern characteristic of a diurnal species, with quiescence at night to minimize energetic costs. Under stratified and hypoxic conditions with high fish density coupled with limited prey availability, anchovies sustained high swimming speeds at night. The sustained nighttime activity resulted in estimated daily energy expenditure over 20% greater than fish that adopted a diurnal activity pattern. We provide evidence that the sustained nighttime activity patterns are a result of foraging at night due to a lower ration achieved during the day. During severe hypoxic events, we also observed individual fish making brief forays into the hypoxic hypolimnion. These bottom waters generally contained higher prey (copepod) concentrations than the surface waters. The bay anchovy, a facultative particle forager, adopts a range of behaviors to compensate for the effects of increased conspecific density and reduced prey availability in the presence of stratification-induced hypoxia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号