首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   3篇
  国内免费   1篇
安全科学   5篇
废物处理   11篇
环保管理   35篇
综合类   35篇
基础理论   62篇
环境理论   2篇
污染及防治   87篇
评价与监测   9篇
社会与环境   10篇
灾害及防治   2篇
  2023年   2篇
  2021年   3篇
  2019年   2篇
  2018年   7篇
  2017年   4篇
  2016年   7篇
  2015年   5篇
  2014年   5篇
  2013年   27篇
  2012年   8篇
  2011年   7篇
  2010年   5篇
  2009年   14篇
  2008年   8篇
  2007年   18篇
  2006年   14篇
  2005年   7篇
  2004年   12篇
  2003年   7篇
  2002年   7篇
  2001年   9篇
  2000年   8篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   5篇
  1992年   3篇
  1990年   2篇
  1988年   3篇
  1986年   3篇
  1984年   5篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
  1970年   1篇
  1961年   1篇
  1954年   3篇
  1951年   1篇
  1949年   1篇
  1948年   2篇
  1946年   1篇
  1942年   1篇
  1941年   1篇
  1939年   2篇
  1919年   1篇
  1914年   1篇
排序方式: 共有258条查询结果,搜索用时 15 毫秒
71.
72.
Substantial emission of ammonia (NH3) from animal houses and the related high local deposition of NH3-N are a threat to semi-natural nitrogen-deficient ecosystems situated near the NH3 source. In Denmark, there are regulations limiting the level of NH3 emission from livestock houses near N-deficient ecosystems that are likely to change due to nitrogen (N) enrichment caused by NH3 deposition. The models used for assessing NH3 emission from livestock production, therefore, need to be precise, as the regulation will affect both the nature of the ecosystem and the economy of the farmer. Therefore a study was carried out with the objective of validating the Danish model used to monitor NH3 transport, dispersion and deposition from and in the neighbourhood of a chicken farm. In the study we measured NH3 emission with standard flux measuring methods, NH3 concentrations at increasing distances from the chicken houses using passive diffusion samplers and deposition using 15N-enriched biomonitors and field plot studies. The dispersion and deposition of NH3 were modelled using the Danish OML-DEP model. It was also shown that model calculations clearly reflect the measured NH3 concentration and N deposition. Deposition of N measured by biomonitors clearly reflected the variation in NH3 concentrations and showed that deposition was not significantly different from zero (P < 0.05) at distances greater than 150–200 m from these chicken houses. Calculations confirmed this, as calculated N deposition 320 m away from the chicken farm was only marginally affected by the NH3 emission from the farm. There was agreement between calculated and measured deposition showing that the model gives true estimates of the deposition in the neighbourhood of a livestock house emitting NH3.  相似文献   
73.
The Little Missouri National Grasslands (LMNG) of western North Dakota support the largest permitted cattle grazing use within all lands administered by the USDA, Forest Service, as well as critical habitat for many wildlife species. This fact, coupled with the need to revise current planning direction for range allotments of the LMNG, necessitated that a broad-level characterization of ecosystem integrity and resource conditions be conducted across all lands within the study area (approximately 800,000 hectares) in a rapid and cost-effective manner. The approach taken in this study was based on ecological classifications, which effectively utilized existing field plot data collected for a variety of previous inventory objectives, and their continuous spatial projection across the LMNG by maps of both existing and potential vegetation. These two map themes represent current and reference conditions (existing vs. potential vegetation); their intersection allowed us to assign various ecological status ratings (i.e., ecosystem integrity and resource condition) based on the degree of departure between current and reference conditions. In this paper, we present a brief review of methodologies used in the development of ecological classifications, and also illustrate their application to assessments of rangeland health through selected maps of ecological status ratings for the LMNG.  相似文献   
74.
any sacoglossans (opisthobranch gastropods) have the potential for carbon acquisition from photosynthesis by plastids sequestered from their macroalgal food as well as by ingestion, digestion and assimilation of the organic carbon derived from the alga. A new method for obtaining a minimum estimate of the fraction of sacoglossan carbon supplied from photosynthesis by kleptoplastids is suggested, based on the mass balance of stable carbon isotopes at the natural abundance level. The method involves comparison of 13C/12C ratios in sacoglossans with those of the algae on which they are found. Differences in ratios between alga and sacoglossan are used to give a minimum estimate of carbon acquisition by kleptoplasty, granted assumptions about the range of 13C/12C fractionation values which can occur for marine photolithotrophs. The new method is applied to several green (ulvophycean) alga–sacoglossan associations from Rottnest Island, Western Australia, and the values compared with those obtained previously by other means. The method suggests values of up to 0.6 of the total carbon input to the sacoglossans from photosynthesis by their kleptoplastids. To improve the estimates of the minimum role of kleptoplastidy in the carbon nutrition of sacoglossans, further information is needed: (1) on the fidelity of a given sacoglossan to a given algal individual (or species), (2) on the 13C/12C ratio of the part of the alga ingested by the sacoglossan, and (3) on the allocation of dietary organic carbon and of kleptoplastidic photosynthate to carbon lost in respiration, mucopolysaccharide production and gametes (and hence not sampled with the animal). Received: 24 November 1999 / Accepted: 20 October 2000  相似文献   
75.
76.
Flow through artificial macropores may occur as a water film along the macropore walls (film flow) or as moving water segments separated by air bubbles (pulse flow). To investigate the effect of macropore flow pattern (i.e., film and pulse flow) on the interaction of solutes with macropore walls, we studied orthophosphate (P) transport and sorption in artificial macropores. The experimental setup consisted of a column (height = 20 cm, diameter = 20 cm) homogenously packed with glass beads and fitted at outflow with a vertical artificial macropore placed below the column. The artificial macropore consisted of ceramic tubes (3 or 8 mm i.d.; 31.5 cm long) coated on the inside with iron oxide serving as phosphate sorbents. An orthophosphate solution containing 0.04 mg P L(-1) was applied at a rate of 9 to 12 mm h(-1) to the column, eventually causing macropore flow. In the 8-mm-i.d. tubes only film flow occurred. Pulse flow was dominating in the 3-mm-i.d. tubes. Generally, the flow patterns were reproducible and seldom did pulse flow replaced film flow or vice versa. During film flow, a significantly larger decrease in macropore P concentration per tube was observed relative to that with pulse flow events. However, pulse and film flow lead to almost the same amounts of P sorbed per unit surface area when exposed to the same solute P concentration. Comparison with P sorption capacity experiments indicated that the sorption rate, rather than the sorption capacity, controls the amount of sorbed P during macropore flow in the studied system.  相似文献   
77.
This article presents an analysis of the projected performance of urban residential rainwater harvesting systems in the United States (U.S.). The objectives are to quantify for 23 cities in seven climatic regions (1) water supply provided from rainwater harvested at a residential parcel and (2) stormwater runoff reduction from a residential drainage catchment. Water‐saving efficiency is determined using a water‐balance approach applied at a daily time step for a range of rainwater cistern sizes. The results show that performance is a function of cistern size and climatic pattern. A single rain barrel (190 l [50 gal]) installed at a residential parcel is able to provide approximately 50% water‐saving efficiency for the nonpotable indoor water demand scenario in cities of the East Coast, Southeast, Midwest, and Pacific Northwest, but <30% water‐saving efficiency in cities of the Mountain West, Southwest, and most of California. Stormwater management benefits are quantified using the U.S. Environmental Protection Agency Storm Water Management Model. The results indicate that rainwater harvesting can reduce stormwater runoff volume up to 20% in semiarid regions, and less in regions receiving greater rainfall amounts for a long‐term simulation. Overall, the results suggest that U.S. cities and individual residents can benefit from implementing rainwater harvesting as a stormwater control measure and as an alternative source of water.  相似文献   
78.
Abstract

The U.S. Department of Defense-approved activities conducted at the Utah Test and Training Range (UTTR) include both operational readiness test firing of intercontinental ballistic missile (ICBM) motors, as well as the destruction of obsolete or otherwise unusable ICBM motors through open burn/open detonation (OB/OD). Within the Utah Division of Air Quality, these activities have been identified as having the potential to generate unacceptable noise levels, as well as significant amounts of volatile organic compounds (VOCs). Hill Air Force Base, UT, has completed a series of field tests at the UTTR in which sound-monitoring surveillance of OB/OD activities was conducted to validate the Sound Intensity Prediction System (SIPS) model. Using results generated by the SIPS model to support the decision to detonate, the UTTR successfully disposed of missile motors having an aggregate net explosive weight (NEW) of 81,374 lb without generating adverse noise levels within populated areas. In conjunction with collecting noise-monitoring data, air emissions were collected to support the development of air emission factors for both static missile motor firings and OB/OD activities. Through the installation of 15 ground-based air samplers, the generation of combustion-fixed gases, VOCs, and chlorides was monitored during the 81,374-lb NEW detonation event. Comparison of field measurements to predictions generated from the US Navy energetic combustion pollutant formation model, POLU4WN, indicated that, as the detonation fire ball expanded, organic compounds, as well as CO, continued to oxidize as the combustion gases mixed with ambient air. VOC analysis of air samplers confirmed the presence of chloromethane, vinyl chloride, benzene, toluene, and 2-methyl-1-propene. Qualitative chloride analysis indicated that gaseous HCl was generated at low concentrations, if at all.  相似文献   
79.
Abstract

The U.S. Department of Defense approved activities conducted at the Utah Test and Training Range (UTTR) include both operational readiness test firing of intercontinental ballistic missile motors as well as the destruction of obsolete or otherwise unusable intercontinental ballistic missile motors through open burn/open detonation (OB/ OD). Within the Utah Division of Air Quality, these activities have been identified as having the potential to generate unacceptable noise levels, as well as significant amounts of hazardous air pollutants. Hill Air Force Base, UT, has completed a series of field tests at the UTTR in which sound-monitoring surveillance of OB/OD activities was conducted to validate the Sound Intensity Prediction System (SIPS) model. Using results generated by the SIPS model to support the decision to detonate, the UTTR successfully disposed of missile motors having an aggregate net explosive weight (NEW) of 56,500 lbs without generating adverse noise levels within populated areas. These results suggest that, under appropriate conditions, missile motors of even larger NEW may be detonated without exceeding regulatory noise limits. In conjunction with collecting noise monitoring data, air quality data was collected to support the development of air emission factors for both static missile motor firings and OB/OD activities. Through the installation of 15 ground-based air samplers, the generation of combustion fixed gases, hazardous air pollutants, and chlorides were monitored during the 56,500-lb NEW detonation event. Comparison of field measurements to predictions generated from the U.S. Navy’s energetic combustion pollutant formation model, POLU4WN, indicated that, as the detonation fireball expanded from ground zero, organic compounds as well as carbon monoxide continued to oxidize as the hot gases reacted with ambient air. Hazardous air pollutant analysis of air samplers confirmed the presence of chloromethane, benzene, toluene, 1,2-propadiene, and 2-methyl-1-propene, whereas the absence of hydrogen chloride gas suggested that free chlorine is not generated during the combustion process.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号