首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14791篇
  免费   534篇
  国内免费   5767篇
安全科学   917篇
废物处理   942篇
环保管理   1171篇
综合类   8131篇
基础理论   2611篇
环境理论   2篇
污染及防治   5658篇
评价与监测   547篇
社会与环境   497篇
灾害及防治   616篇
  2024年   3篇
  2023年   224篇
  2022年   681篇
  2021年   545篇
  2020年   408篇
  2019年   429篇
  2018年   535篇
  2017年   656篇
  2016年   811篇
  2015年   1009篇
  2014年   1160篇
  2013年   1616篇
  2012年   1263篇
  2011年   1345篇
  2010年   962篇
  2009年   952篇
  2008年   1014篇
  2007年   922篇
  2006年   825篇
  2005年   603篇
  2004年   420篇
  2003年   549篇
  2002年   483篇
  2001年   408篇
  2000年   432篇
  1999年   473篇
  1998年   422篇
  1997年   351篇
  1996年   333篇
  1995年   284篇
  1994年   235篇
  1993年   188篇
  1992年   151篇
  1991年   88篇
  1990年   69篇
  1989年   54篇
  1988年   47篇
  1987年   30篇
  1986年   25篇
  1985年   13篇
  1984年   15篇
  1983年   18篇
  1982年   11篇
  1981年   12篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1966年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
591.
• Impact of urban development on water system is assessed with carrying capacity. • Impacts on both water resource quantity and environmental quality are involved. • Multi-objective optimization revealing system trade-off facilitate the regulation. • Efficiency, scale and structure of urban development are regulated in two stages. • A roadmap approaching more sustainable development is provided for the case city. Environmental impact assessments and subsequent regulation measures of urban development plans are critical to human progress toward sustainability, since these plans set the scale and structure targets of future socioeconomic development. A three-step methodology for assessing and optimizing an urban development plan focusing on its impacts on the water system was developed. The methodology first predicted the pressure on the water system caused by implementation of the plan under distinct scenarios, then compared the pressure with the carrying capacity threshold to verify the system status; finally, a multi-objective optimization method was used to propose regulation solutions. The methodology enabled evaluation of the water system carrying state, taking socioeconomic development uncertainties into account, and multiple sets of improvement measures under different decisionmaker preferences were generated. The methodology was applied in the case of Zhoushan city in South-east China. The assessment results showed that overloading problems occurred in 11 out of the 13 zones in Zhoushan, with the potential pressure varying from 1.1 to 18.3 times the carrying capacity. As a basic regulation measure, an environmental efficiency upgrade could relieve the overloading in 4 zones and reduce 9%‒63% of the pressure. The optimization of industrial development showed that the pressure could be controlled under the carrying capacity threshold if the planned scale was reduced by 24% and the industrial structure was transformed. Various regulation schemes including a more suitable scale and structure with necessary efficiency standards are provided for decisionmakers that can help the case city approach a more sustainable development pattern.  相似文献   
592.
• Upgrade process was investigated in a full-scale landfill leachate treatment plant. • The optimization of DO can technically achieve the shift from CND to PND process. • Nitrosomonas was mainly responsible for ammonium oxidation in PND system. • An obviously enrichment of Thauera was found in the PND process. • Enhanced metabolic potentials on organics was found during the process update. Because of the low access to biodegradable organic substances used for denitrification, the partial nitrification-denitrification process has been considered as a low-cost, sustainable alternative for landfill leachate treatment. In this study, the process upgrade from conventional to partial nitrification-denitrification was comprehensively investigated in a full-scale landfill leachate treatment plant (LLTP). The partial nitrification-denitrification system was successfully achieved through the optimizing dissolved oxygen and the external carbon source, with effluent nitrogen concentrations lower than 150 mg/L. Moreover, the upgrading process facilitated the enrichment of Nitrosomonas (abundance increased from 0.4% to 3.3%), which was also evidenced by increased abundance of amoA/B/C genes carried by Nitrosomonas. Although Nitrospira (accounting for 0.1%–0.6%) was found to stably exist in the reactor tank, considerable nitrite accumulation occurred in the reactor (reaching 98.8 mg/L), indicating high-efficiency of the partial nitrification process. Moreover, the abundance of Thauera, the dominant denitrifying bacteria responsible for nitrite reduction, gradually increased from 0.60% to 5.52% during the upgrade process. This process caused great changes in the microbial community, inducing continuous succession of heterotrophic bacteria accompanied by enhanced metabolic potentials toward organic substances. The results obtained in this study advanced our understanding of the operation of a partial nitrification-denitrification system and provided a technical case for the upgrade of currently existing full-scale LLTPs.  相似文献   
593.
• Physical and chemical properties and application of peracetic acid solution. • Determination method of high concentration peracetic acid. • Determination method of residual peracetic acid (low concentration). Peroxyacetic acid has been widely used in food, medical, and synthetic chemical fields for the past several decades. Recently, peroxyacetic acid has gradually become an effective alternative disinfectant in wastewater disinfection and has strong redox capacity for removing micro-pollutants from drinking water. However, commercial peroxyacetic acid solutions are primarily multi-component mixtures of peroxyacetic acid, acetic acid, hydrogen peroxide, and water. During the process of water treatment, peroxyacetic acid and hydrogen peroxide (H2O2) often coexist, which limits further investigation on the properties of peroxyacetic acid. Therefore, analytical methods need to achieve a certain level of selectivity, particularly when peroxyacetic acid and hydrogen peroxide coexist. This review summarizes the measurement and detection methods of peroxyacetic acid, comparing the principle, adaptability, and relative merits of these methods.  相似文献   
594.
• The rice growth was promoted by nano-TiO2 of 0.1–100 mg/L. • Nano-TiO2 enhanced the energy storage in photosynthesis. • Nano-TiO2 reduced energy consumption in carbohydrate metabolism and TCA cycle. Titanium dioxide nanoparticle (nano-TiO2), as an excellent UV absorbent and photo-catalyst, has been widely applied in modern industry, thus inevitably discharged into environment. We proposed that nano-TiO2 in soil can promote crop yield through photosynthetic and metabolic disturbance, therefore, we investigated the effects of nano-TiO2 exposure on related physiologic-biochemical properties of rice (Oryza sativa L.). Results showed that rice biomass was increased >30% at every applied dosage (0.1–100 mg/L) of nano-TiO2. The actual photosynthetic rate (Y(II)) significantly increased by 10.0% and 17.2% in the treatments of 10 and 100 mg/L respectively, indicating an increased energy production from photosynthesis. Besides, non-photochemical quenching (Y(NPQ)) significantly decreased by 19.8%–26.0% of the control in all treatments respectively, representing a decline in heat dissipation. Detailed metabolism fingerprinting further revealed that a fortified transformation of monosaccharides (D-fructose, D-galactose, and D-talose) to disaccharides (D-cellobiose, and D-lactose) was accompanied with a weakened citric acid cycle, confirming the decrease of energy consumption in metabolism. All these results elucidated that nano-TiO2 promoted rice growth through the upregulation of energy storage in photosynthesis and the downregulation of energy consumption in metabolism. This study provides a mechanistic understanding of the stress-response hormesis of rice after exposure to nano-TiO2, and provides worthy information on the potential application and risk of nanomaterials in agricultural production.  相似文献   
595.
• PAM degradation in thermophilic AD in comparison with mesophilic AD. • PAM degradation and its impact on thermophilic and mesophilic AD. • Enhanced methane yield in presence of PAM during thermophilic and mesophilic AD. • PAM degradation and microbial community analysis in thermophilic and mesophilic AD. Polyacrylamide (PAM) is generally employed in wastewater treatment processes such as sludge dewatering and therefore exists in the sludge. Furthermore, it degrades slowly and can deteriorate methane yield during anaerobic digestion (AD). The impact or fate of PAM in AD under thermophilic conditions is still unclear. This study mainly focuses on PAM degradation and enhanced methane production from PAM-added sludge during 15 days of thermophilic (55°C) AD compared to mesophilic (35°C) AD. Sludge and PAM dose from 10 to 50 g/kg TSS were used. The results showed that PAM degraded by 76% to 78% with acrylamide (AM) content of 0.2 to 3.3 mg/L in thermophilic AD. However, it degraded only 27% to 30% with AM content of 0.5 to 7.2 mg/L in mesophilic AD. The methane yield was almost 230 to 238.4 mL/g VSS on the 8th day in thermophilic AD but was 115.2 to 128.6 mL/g VSS in mesophilic AD. Mechanism investigation revealed that thermophilic AD with continuous stirring not only enhanced PAM degradation but also boosted the organics release from the sludge with added PAM and gave higher methane yield than mesophilic AD.  相似文献   
596.
This study investigated crystallization mechanisms for the formation of lead aluminosilicate by sintering lead stabilization with kaolin-based precursors. PbAl2Si2O8 was found to be the only stable lead aluminosilicate in low-PbO system and demonstrates its highly intrinsic resistance to acid attack in leaching test. A three-stage PbAl2Si2O8 formation mechanism was supported by the results of the changing temperature in the system. Amorphization of sintered products was observed in both PbO/kaolinite and PbO/mullite systems at 600–700°C. When the temperature was increased to 750–900°C, the crystallochemical formation of lead aluminosilicates (i.e., Pb4Al4Si3O16, Pb6Al6Si2O21, and PbAl2Si2O8) was observed. Pb4Al4Si3O16 and Pb6Al6Si2O21 were found to be the intermediate phases at 700–900°C. Finally, PbAl2Si2O8 was found to be the only crystallite phase to host Pb at above 950°C. A maximum of 80% and 96.7% Pb can be incorporated into PbAl2Si2O8 in PbO/kaolinite and PbO/mullite systems, respectively, but the final products exhibited different microstructures. To reduce environmental hazard of lead, this strategy demonstrated a preferred mechanism of immobilizing lead into PbAl2Si2O8 structure via kaolin-based precursors.  相似文献   
597.
Environmental Science and Pollution Research - Biochar has been widely accepted as a soil amendment to improve nitrogen (N) use efficiency, but the effect of biochar on N transformation metabolic...  相似文献   
598.
Environmental Science and Pollution Research - In this study, porous activated carbon balls supported by nanoscale zero-valent iron composites (Fe@PACB-700) were used for the first time for the...  相似文献   
599.
Environmental Science and Pollution Research - The combustion of fossil fuels has resulted in rapidly increasing emissions of nitrogen oxide (NOx), which has caused serious human health and...  相似文献   
600.
通过外观检查、硬度、金相等检测方法,从金属管壁超温运行、蒸汽侧氧化行为、析出相及冷弯变形对组织性能影响等方面分析了某电厂1 000 MW超超临界机组屏式过热器弯头开裂原因,得出TP347HFG弯头开裂的主要原因是弯头组织富含较多的σ相、NbC等硬脆析出相,同时冷弯加工导致管子内部产生残余应力,加剧了弯头脆性开裂的倾向。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号