首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1581篇
  免费   84篇
  国内免费   662篇
安全科学   69篇
废物处理   122篇
环保管理   105篇
综合类   929篇
基础理论   281篇
环境理论   2篇
污染及防治   574篇
评价与监测   79篇
社会与环境   52篇
灾害及防治   114篇
  2023年   24篇
  2022年   86篇
  2021年   81篇
  2020年   47篇
  2019年   47篇
  2018年   52篇
  2017年   62篇
  2016年   77篇
  2015年   94篇
  2014年   119篇
  2013年   131篇
  2012年   116篇
  2011年   147篇
  2010年   126篇
  2009年   103篇
  2008年   103篇
  2007年   70篇
  2006年   95篇
  2005年   51篇
  2004年   64篇
  2003年   49篇
  2002年   59篇
  2001年   48篇
  2000年   57篇
  1999年   56篇
  1998年   57篇
  1997年   66篇
  1996年   46篇
  1995年   46篇
  1994年   28篇
  1993年   36篇
  1992年   19篇
  1991年   14篇
  1990年   10篇
  1989年   5篇
  1988年   8篇
  1987年   10篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   5篇
  1930年   1篇
排序方式: 共有2327条查询结果,搜索用时 187 毫秒
991.
将循环活性污泥系统(Cyclic Activated Sludge System,CASS)与膜过滤技术组合为一体式膜生物反应器(Submerged Membrane Bioreactor,SMBR),研究其用于生活污水回用处理的可行性,对该工艺的适宜运行条件进行了研究.结果表明,水力停留时间(HRT)为4 h、DO在2.0~3.5 mg/L、温度控制在常温、pH在6.5~8.0的运行条件是比较经济高效的.并考察了装置对实际生活污水的处理效果,结果表明出水水质优异,优于中水回用标准(CJ 25.1-89).  相似文献   
992.
应用自制微孔扩散式接触反应器,考察了不同pH条件下垃圾填埋场后期渗滤液的臭氧化预处理效果.结果表明,渗滤液初始pH值升高,臭氧利用率增大,垃圾渗滤液中COD、腐殖酸的去除速率加快;当初始pH为10时,经臭氧化处理120 min后,模拟废水的BOD5/COD可从初始的0.17提高到0.36,改善了废水的可生化性,同时渗滤液的色度、浊度、腐殖酸和SS也有较高的去除率.  相似文献   
993.
危险废物因具有毒性、易燃性、腐蚀性、反应性和感染性等多种危害特性,如果暴露于环境中将会对生态环境和人类健康造成很大威胁;所以及时而有效地处理处置危险废物意义极为重大.文章简要地介绍了危险废物的定义及其来源,并指出其对环境和人类造成的危害,总结了我国目前的危险废物处理处置技术的现状,根据我国危险废物污染防治的技术路线和技术政策,分析了危险废物的处置措施,系统地论述了常规危险废物的常用处置方法,从而揭示了我国在危险废物处理处置方面及管理方面的问题,并提出针对危险废物处理处置的对策与建议.  相似文献   
994.
Mn-Ni oxides with different compositions were prepared using standard co-precipitation(CP) and urea hydrolysis-precipitation(UH) methods and optimized for the selective catalytic reduction of nitrogen oxides(NO_x) by NH_3 at low temperature.Mn((2))Ni_((1))O_x-CP and Mn_((2))Ni_((1))O_x-UH(with Mn:Ni molar ratio of 2:1) catalysts showed almost identical selective catalytic reduction(SCR) catalytic activity,with about 96% NO_x conversion at 750 C and-99%in the temperature range from 100 to 250℃.X-ray diffraction(XRD) results showed that Mn_((2))Ni_((1))O_x-CP and Mn_((2))Ni_((1))O_x-UH catalysts crystallized in the form of Mn_2NiO_4 and MnO_2-Mn_2NiO_4 spinel,respectively.The latter gave relatively good selectivity to N_2,which might be due to the presence of the MnO_2 phase and high metal-O binding energy,resulting in low dehydrogenation ability.According to the results of various characterization methods,it was found that a high density of surface chemisorbed oxygen species and efficient electron transfer between Mn and Ni in the crystal structure of Mn_2NiO_4 spinel played important roles in the high-efficiency SCR activity of these catalysts.Mn_((2))Ni_((1))O_x catalysts presented good resistance to H_2O or/and SO_2 with stable activity,which benefited from the Mn_2NiO_4 spinel structure and Eley-Rideal mechanism,with only slight effects from SO_2.  相似文献   
995.
Currently, the wastewater treatment plants (WWTPs) attempt to achieve the shifting from general pollution parameters control to reduction of organic micropollutants discharge. However, they have not been able to satisfy the increasing ecological safety needs. In this study, the removal of micropollutants was investigated, and the ecological safety was assessed for a local WWTP. Although the total concentration of 31 micropollutants detected was reduced by 83% using the traditional biological treatment processes, the results did not reflect chemicals that had poor removal efficiencies and low concentrations. Of the five categories of micropollutants, herbicides, insecticides, and bactericides were difficult to remove, pharmaceuticals and UV filters were effectively eliminated. The specific photosynthesis inhibition effect and non-specific bioluminescence inhibition effect from wastewater were detected and evaluated using hazardous concentration where 5% of aquatic organisms are affected. The photosynthesis inhibition effect from wastewater in the WWTP was negligible, even the untreated raw wastewater. However, the bioluminescence inhibition effect from wastewater which was defined as the priority biological effect, posed potential ecological risk. To decrease non-specific biological effects, especially of macromolecular dissolved organic matter, overall pollutant reduction strategy is necessary. Meanwhile, the ozonation process was used to further decrease the bioluminescence inhibition effects from the secondary effluent; ≥ 0.34 g O3/g DOC of ozone dose was recommended for micropollutants elimination control and ecological safety.  相似文献   
996.
A new calcium-modified and starch-stabilized ferromanganese binary oxide (Ca-SFMBO) sorbent was fabricated with different Ca concentrations for the adsorption of arsenic (As) and cadmium (Cd) in water. The maximum As(III) and Cd(II) adsorption capacities of 1% Ca-SFMBO were 156.25 mg/g and 107.53 mg/g respectively in single-adsorption systems. The adsorption of As and Cd by the Ca-SFMBO sorbent was pH-dependent at values from 1 to 7, with an optimal adsorption pH of 6. In the dual-adsorbate system, the presence of Cd(II) at low concentrations enhanced As(III) adsorption by 33.3%, while the adsorption of As(III) was inhibited with the increase of Cd(II) concentration. Moreover, the addition of As(III) increased the adsorption capacity for Cd(II) up to two-fold. Through analysis by X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR), it was inferred that the mechanism for the co-adsorption of Cd(II) and As(III) included both competitive and synergistic effects, which resulted from the formation of ternary complexes. The results indicate that the Ca-SFMBO material developed here could be used for the simultaneous removal of As(III) and Cd(II) from contaminated water.  相似文献   
997.
Water regime and nitrogen (N) fertilizer are two important factors impacting greenhouse gases (GHG) emission from paddy field, whereas their effects have not been well studied in cold region. In this study, we conducted a two-year field experiment to study the impacts of water regime and N fertilizer on rice yields and GHG emissions in Harbin, China, a cold region located in high latitudes. Our results showed that intermittent irrigation significantly decreased methane (CH4) emission compared with continuous flooding, however, the decrement was far lower than the global average level. The N2O emissions were very small when flooded but peaked at the beginning of the disappearance of floodwater. The N fertilizer treatments increased CH4 emissions at low level (75kgN/ha). But both CH4 and N2O emissions were uninfluenced at the levels of 150kgN/ha and 225kgN/ha. Rice yields increased under intermittent irrigation and were highest at the level of 150kgN/ha. From our results, we recommended that the intermittent irrigation and 150kgN/ha as the ideal water regime-nitrogen fertilizer incorporation for this area to achieve low GHG emissions without impacting rice yields.  相似文献   
998.
Walnut-shell activated carbon(WSAC) supported ferric oxide was modified by non-thermal plasma(NTP), and the removal efficiency for hydrogen sulfide over Fe/WSAC modified by dielectric barrier discharge(DBD) was significantly promoted. The sample modified for10 min and 6.8 k V output(30 V input voltage) maintained 100% H2 S conversion over a long reaction time of 390 min. The surface properties of adsorbents modified by NTP under different conditions were evaluated by the methods of X-ray photoelectron spectroscopy(XPS), Brunauer–Emmett–Teller(BET) analysis and in-situ Fourier transform infrared spectroscopy(FTIR), to help understand the effect of the NTP treatment. NTP treatment enhanced the adsorption capacity of Fe/WSAC, which could due to the formation of micro-pores with sizes of0.4, 0.5 and 0.75 nm. XPS revealed that chemisorbed oxygen changed into lattice oxygen after NTP treatment, and lattice oxygen is beneficial for H2 S oxidation. From the in-situ FTIR result,transformation of the reaction path on Fe/WSAC was observed after NTP modification. The research results indicate that NTP is an effective method to improve the surface properties of the Fe/WSAC catalyst for H2 S adsorption-oxidation.  相似文献   
999.
Gaseous peroxides play important roles in atmospheric chemistry. To understand the pathways of the formation and removal of peroxides, atmospheric peroxide concentrations and their controlling factors were measured from 7:00 to 20:00 in September, October, and November 2013 at a heavily trafficked residential site in Beijing, China, with average concentrations of hydrogen peroxide (H2O2) and methyl hydroperoxide (MHP) at 0.55 ppb and 0.063 ppb, respectively. H2O2 concentrations were higher in the afternoon and lower in the morning and evening, while MHP concentrations did not exhibit a regular diurnal pattern. Both H2O2 and MHP concentrations increased at dusk in most cases. Both peroxides displayed monthly variations with higher concentrations in September. These results suggested that photochemical activity was the main controlling factor on variations of H2O2 concentrations during the measurement period. Increasing concentrations of volatile organic compounds emitted by motor vehicles were important contributors to H2O2 and MHP enrichment. High levels of H2O2 and MHP concentrations which occurred during the measurement period probably resulted from the transport of a polluted air mass with high water vapor content passing over the Bohai Bay, China.  相似文献   
1000.
Chitosan–metal complexes have been widely studied in wastewater treatment, but there are still various factors in complex preparation which are collectively responsible for improving the adsorption capacity need to be further studied. Thus, this study investigates the factors affecting the adsorption ability of chitosan–metal complex adsorbents, including various kinds of metal centers, different metal salts and crosslinking degree. The results show that the chitosan–Fe( Ⅲ) complex prepared by sulfate salts exhibited the best adsorption efficiency(100%) for various dyes in very short time duration(10 min), and its maximum adsorption capacity achieved 349.22 mg/g. The anion of the metal salt which was used in preparation played an important role to enhance the adsorption ability of chitosan–metal complex. SO_4~(2-) ions not only had the effect of crosslinking through electrostatic interaction with amine group of chitosan polymer, but also could facilitate the chelation of metal ions with chitosan polymer during the synthesis process.Additionally, the p H sensitivity and the sensitivity of ionic environment for chitosan–metal complex were analyzed. We hope that these factors affecting the adsorption of the chitosan–metal complex can help not only in optimizing its use but also in designing new chitosan–metal based complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号