首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1389篇
  免费   12篇
  国内免费   16篇
安全科学   32篇
废物处理   88篇
环保管理   137篇
综合类   154篇
基础理论   293篇
环境理论   2篇
污染及防治   480篇
评价与监测   145篇
社会与环境   83篇
灾害及防治   3篇
  2023年   21篇
  2022年   52篇
  2021年   79篇
  2020年   39篇
  2019年   29篇
  2018年   55篇
  2017年   66篇
  2016年   75篇
  2015年   52篇
  2014年   70篇
  2013年   116篇
  2012年   79篇
  2011年   104篇
  2010年   82篇
  2009年   68篇
  2008年   63篇
  2007年   71篇
  2006年   57篇
  2005年   39篇
  2004年   32篇
  2003年   27篇
  2002年   34篇
  2001年   17篇
  2000年   8篇
  1999年   8篇
  1998年   6篇
  1997年   5篇
  1996年   12篇
  1995年   5篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1968年   1篇
  1967年   1篇
  1963年   1篇
  1915年   1篇
排序方式: 共有1417条查询结果,搜索用时 15 毫秒
61.
The paper describes the results of a study of the impact of the National Energy on the trend towards increased utilization of coal and lignite in Texas with forecasts of increased coal and lignite utilization for the electric utility and industrial sectors. Environmental impacts of this increased coal and lignite use are projected in terms of increased air pollutant emissions and air quality impacts. Economic costs of compliance with alternative source emission regulations are also projected for the electric utility industry.Lignite consumption in Texas under the National Energy Plan is projected to increase from the present 13 million metric tons in 1976 to 57 million metric tons annually by 1985. Sub-bituminous coal consumption in Texas is projected to increase from 1 million metric per year in 1976 to 49 million metric tons per year in 1985. Bituminous coal consumption in Texas is expected to increase from less than one million metric tons per year in 1976 to about 3 million metric tons per year in 1985.Major increases in sulfur oxides emissions from coal and lignite combustion in Texas can be expected by 1985 of up to 1.5 × 109 kg per year without controls and 0.2 × 109 kg per year with controls. Increases in acid precipitation formation will result in north-east Texas from extensive lignite usage for electric power generation as a detriment to agriculture. The photochemical air pollution problem in the Houston area will probably worsen primarily because of increased nitrogen oxides and sulfur oxides emissions because of industrial coal combustion. Capital costs of air pollution controls in Texas for coal-fired utility boilers are estimated as up to U.S. $3.9 billion by 1985, with total operating costs of up to U.S. $1.2 billion per year.  相似文献   
62.
63.
Golden alga (Prymnesium parvum) is a harmful alga that has caused ecological and economic harm in freshwater and marine systems worldwide. In inland systems of North America, toxic blooms have nearly eliminated fish populations in some systems. Modifying nutrient profiles through alterations to land or water use may be a viable alternative for golden alga control in reservoirs. The main objective of this study was to improve our understanding of the nutrient dynamics that influence golden alga bloom formation and toxicity in west Texas reservoirs. We examined eight sites in the Upper Colorado River basin, Texas: three impacted reservoirs that have experienced repeated golden alga blooms; two reference reservoirs where golden alga is present but nontoxic; and three confluence sites downstream of the impacted and reference sites. Total, inorganic, and organic nitrogen and phosphorus and their ratios were quantified monthly along with golden alga abundance and ichthyotoxicity between December 2010 and July 2011. Blooms persisted for several months at the impacted sites, which were characterized by high organic nitrogen and low inorganic nitrogen. At impacted sites, abundance was positively associated with inorganic phosphorus and bloom termination coincided with increases in inorganic nitrogen and decreases in inorganic phosphorus in late spring. Management of both inorganic and organic forms of nutrients may create conditions in reservoirs unfavorable to golden alga.  相似文献   
64.
65.
Of growing amount of food waste, the integrated food waste and waste water treatment was regarded as one of the efficient modeling method. However, the load of food waste to the conventional waste treatment process might lead to the high concentration of total nitrogen(T-N) impact on the effluent water quality. The objective of this study is to establish two machine learning models—artificial neural networks(ANNs) and support vector machines(SVMs), in order to predict 1-day interval T-N concentration of effluent from a wastewater treatment plant in Ulsan, Korea. Daily water quality data and meteorological data were used and the performance of both models was evaluated in terms of the coefficient of determination(R~2), Nash–Sutcliff efficiency(NSE), relative efficiency criteria(d rel). Additionally, Latin-Hypercube one-factor-at-a-time(LH-OAT) and a pattern search algorithm were applied to sensitivity analysis and model parameter optimization, respectively. Results showed that both models could be effectively applied to the 1-day interval prediction of T-N concentration of effluent. SVM model showed a higher prediction accuracy in the training stage and similar result in the validation stage.However, the sensitivity analysis demonstrated that the ANN model was a superior model for 1-day interval T-N concentration prediction in terms of the cause-and-effect relationship between T-N concentration and modeling input values to integrated food waste and waste water treatment. This study suggested the efficient and robust nonlinear time-series modeling method for an early prediction of the water quality of integrated food waste and waste water treatment process.  相似文献   
66.
67.
68.
69.
70.
A mechanically stirred anaerobic sequencing batch reactor (ASBR) containing granular biomass was applied to the treatment of a wastewater simulating the effluent from a personal care industry. The ASBR was operated with cycle lengths (tC) of 8, 12 and 24 h and applied volumetric organic loads (AVOL) of 0.75, 0.50 and 0.25 gCOD/L.d, treating 2.0 L liquid medium per cycle. Stirring frequency was 150 rpm and the reactor was kept in an isothermal chamber at 30 °C. Increase in tC resulted in efficiency increase at constant AVOL, reaching 77% at tC of 24 h versus 69% at tC of 8 h. However, efficiency decreased when AVOL decreased as a function of increasing tC, due to the lack of substrate in the reaction medium. Moreover, replacing part of the wastewater by a chemically balanced synthetic one did not yield the expected effect and system efficiency dropped.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号