首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12500篇
  免费   121篇
  国内免费   93篇
安全科学   360篇
废物处理   456篇
环保管理   1812篇
综合类   2172篇
基础理论   3317篇
环境理论   9篇
污染及防治   3081篇
评价与监测   769篇
社会与环境   649篇
灾害及防治   89篇
  2023年   71篇
  2022年   109篇
  2021年   104篇
  2020年   86篇
  2019年   98篇
  2018年   171篇
  2017年   156篇
  2016年   238篇
  2015年   216篇
  2014年   287篇
  2013年   936篇
  2012年   389篇
  2011年   527篇
  2010年   434篇
  2009年   505篇
  2008年   550篇
  2007年   545篇
  2006年   488篇
  2005年   445篇
  2004年   372篇
  2003年   389篇
  2002年   367篇
  2001年   492篇
  2000年   358篇
  1999年   213篇
  1998年   140篇
  1997年   162篇
  1996年   174篇
  1995年   204篇
  1994年   197篇
  1993年   168篇
  1992年   137篇
  1991年   173篇
  1990年   167篇
  1989年   164篇
  1988年   118篇
  1987年   119篇
  1986年   120篇
  1985年   93篇
  1984年   118篇
  1983年   115篇
  1982年   124篇
  1981年   115篇
  1980年   102篇
  1979年   116篇
  1978年   79篇
  1977年   79篇
  1975年   78篇
  1973年   74篇
  1967年   66篇
排序方式: 共有10000条查询结果,搜索用时 2 毫秒
251.
Ground discarded tires remove naphthalene, toluene, and mercury from water   总被引:2,自引:0,他引:2  
Gunasekara AS  Donovan JA  Xing B 《Chemosphere》2000,41(8):1155-1160
Ground discarded tires adsorb naphthalene, toluene, and mercury ions (Hg2+) from aqueous solutions. Their sorption properties and kinetics were determined by batch equilibration techniques at 20 degrees C. The isotherms were linear for naphthalene and toluene and their sorption coefficients were about 1340 and 255 (ml/g), respectively. Sorption of the organic compounds by the ground rubber particles was relatively fast (within 30 min). However, the mercury isotherms were non-linear, and its sorption was slow as compared to the sorption of the organics. The rubber particles had a strong affinity for Hg2+. These results show that ground discarded tires are effective in removing organic compounds and Hg2+ from wastewater and other contaminated environments. In addition it would be a useful, environmentally friendly use of discarded tires (one tire per year per capita is discarded in the United States).  相似文献   
252.
Replacement of H2O2 by O2 in Fenton and photo-Fenton reactions   总被引:8,自引:0,他引:8  
Utset B  Garcia J  Casado J  Domènech X  Peral J 《Chemosphere》2000,41(8):1187-1192
The consumption of oxygen during the degradation of aniline by Fenton and photo-Fenton reactions is studied. The effect that parameters like aniline, Fe(II) and H2O2 initial concentration, pH, temperature and O2 flow rate have on the ratio O2 consumed/H2O2 consumed is examined. The determination of those combinations of experimental conditions for which an effective partial replacement of H2O2 by O2 as electron acceptor takes place is investigated. The results show that this replacement takes place in a variable extent, but the presence of H2O2 is necessary along the reaction, and the maximum consumption of O2 only takes place when the ratio amount of aniline mineralized vs. initial aniline concentration is minimal.  相似文献   
253.
In recent years, scientific discussion has included the influence of thermodynamic conditions (e.g., temperature, relative humidity, and filter face velocity) on PM retention efficiency of filter-based samplers and monitors. Method-associated thermodynamic conditions can, in some instances, dramatically influence the presence of particle-bound water and other light-molecular-weight chemical components such as particulate nitrates and certain organic compounds. The measurement of fine particle mass presents a new challenge for all PM measurement methods, since a relatively greater fraction of the mass is semi-volatile. The tapered element oscillating microbalance (TEOM) continuous PM monitor is a U.S. Environmental Protection Agency (EPA) PM10 equivalent method (EQPM-1090079). Several hundred of these monitors are deployed throughout the United States. The TEOM monitor has the unique characteristic of providing direct PM mass measurement without the calibration uncertainty inherent in mass surrogate methods. In addition, it provides high-precision, near-real-time continuous data automatically. Much attention has been given to semi-volatile species retention of the TEOM method.  相似文献   
254.
The nature and congener composition of PCBs and PAHs present in sewage sludge composting processes was investigated. These studies included analysis of the most significant process parameters (such as pH, temperature, weight percentage variation) and in addition heavy metals whose typical composting speciation and behaviour were also considered in order to better understand organic compound time profiles. The significant correlation found between Pb, Cd, Cu and PCBs and between PAHs and Hg implies that quite a strong adsorption of PCBs onto organic matter takes place and also provides evidence for the volatilisation of PAHs. Chemical characteristics of inorganic species and organic compounds are summarised to account for the observed correlation and time trend profiles. Moreover, single congener concentrations demonstrate that the number of Cl substituents for PCBs and condensed benzene rings for PAHs determine to what extent they can be broken down for biodegradation and removed through volatilisation respectively.  相似文献   
255.
We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C2H5OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C2H5OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and reduce the demand for imported fuels. Fuels from food sources, such as biodiesel from soybeans and C2H5OH from corn, can be attractive only if the co-products are in high demand and if the fuel production does not diminish the food supply. C2H5OH from herbaceous or woody biomass could replace the gasoline burned in the light-duty fleet while supplying electricity as a co-product. While it costs more than gasoline, bioethanol would be attractive if the price of gasoline doubled, if significant reductions in GHG emissions were required, or if fuel economy regulations for gasoline vehicles were tightened.  相似文献   
256.
In situ sequential treatment of a mixed contaminant plume   总被引:1,自引:0,他引:1  
Groundwater plumes often contain a mixture of contaminants that cannot easily be remediated in situ using a single technology. The purpose of this research was to evaluate an in situ treatment sequence for the control of a mixed organic plume (chlorinated ethenes and petroleum hydrocarbons) within a Funnel-and-Gate. A shallow plume located in the unconfined aquifer at Alameda Point, CA, was found to contain up to 218,000 μg/l of cis-1,2 dichloroethene (cDCE), 16,000 μg/l of vinyl chloride (VC) and <1000 μg/l of 1,1 dichloroethene (1,1 DCE), trans-1,2 dichloroethene (trans-1,2 DCE) and trichloroethene (TCE). Total benzene, toluene, ethylbenzene and xylenes (BTEX) concentrations were <10,000 μg/l. Contaminated groundwater was funneled into a gate, 3.0 m wide, 4.5 m long and 6.0 m deep (keyed into the underlying aquitard) where treatment occurred. The initial gate segment consisted of granular iron, for the reductive dechlorination of the higher chlorinated ethenes. The second segment, the biosparge zone, promoted aerobic biodegradation of petroleum hydrocarbons and any remaining lesser-chlorinated compounds, stimulated by dissolved oxygen (DO) and carbon dioxide (CO2) additions via an in situ sparge system (CO2 was used to neutralize the high pH produced from reactions in the iron wall). Groundwater was drawn through the gate by pumping two wells located at the sealed, downgradient, end. Over a 4-month period an estimated 1350 g of cDCE flowed into the treatment gate and the iron wall removed 1230 g, or 91% of the mass. The influent mass of VC was 572 g and the iron wall removed 535 g, corresponding to 94% mass removal. The other chlorinated ethenes had significantly lower influent masses (3 to 108 g) and the iron wall removed the majority of the mass resulting in >96% mass removal for any of the compounds. In spite of these high removal percentages, laboratory column tests indicated that at these levels of chlorinated contaminants, surface saturation of the iron grains likely contributed to lower than expected reaction rates. In the biosparge zone, mass removal of cDCE appeared to occur predominantly by biodegradation (65%) with volatilization (35%) being an important secondary process. The dominant removal process for VC was volatilization (70%) although significant biodegradation was also indicated (30%). Laboratory microcosm results confirmed the potential for aerobic biodegradation of cDCE and VC. When average influent field concentrations for cDCE and VC were 220,000 and 46,000 μg/l, respectively, the sequential treatment unit removed 99.6% of the total mass and when the influent concentrations decreased to 26,000 and 19,000 μg/l for cDCE and VC, respectively, >99.9% removal within the treatment gate was attained. BTEX compounds were found to be significantly retarded in the iron treatment zone. Although they did eventually break through the granular iron, and into the gravel transition zone, none of these compounds was detected in the biosparge zone. No noticeable interferences between the anaerobic (reductive) and aerobic parts of the system occurred during testing. The results of this experiment show that in situ treatment sequences are viable, although further work is needed to optimize performance.  相似文献   
257.
258.
Sorption of naphthalene and phenanthrene by soil humic acids   总被引:26,自引:0,他引:26  
Humic acids are a major fraction of soil organic matter (SOM), and sorption of hydrophobic organic chemicals by humic acids influences their behavior and fate in soil. A clear understanding of the sorption of organic chemicals by humic acids will help to determine their sorptive mechanisms in SOM and soil. In this paper, we determined the sorption of two hydrophobic organic compounds, naphthalene and phenanthrene by six pedogenetically related humic acids. These humic acids were extracted from different depths of a single soil profile and characterized by solid-state CP/MAS 13C nuclear magnetic resonance (NMR). Aromaticity of the humic acids increased with soil depth. Similarly, atomic ratios of C/H and C/O also increased with depth (from organic to mineral horizons). All isotherms were nonlinear. Freundlich exponents (N) ranged from 0.87 to 0.95 for naphthalene and from 0.86 to 0.92 for phenanthrene. The N values of phenanthrene were consistently lower than naphthalene for a given humic acid. For both compounds, N values decreased with increasing aromaticity of the humic acids, such an inverse relationship was never reported before. These results support the dual-mode sorption model where partitioning occurs in both expanded (flexible) and condensed (rigid) domains while nonlinear sorption only in condensed domains of SOM. Sorption in the condensed domains may be a cause for slow desorption, and reduced availability and toxicity with aging.  相似文献   
259.
This is a laboratory investigation on the emissions from batch combustion of representative infectious ("red bag") medical waste components, such as medical examination latex gloves and sterile cotton pads. Plastics and cloth account for the majority of the red bag wastes by mass and, certainly, by volume. An electrically heated, horizontal muffle furnace was used for batch combustion of small quantities of shredded fuels (0.5-1.5 g) at a gas temperature of approximately 1000 degrees C. The residence time of the post-combustion gases in the furnace was approximately 1 s. At the exit of the furnace, the following emissions were measured: CO, CO2, NOx, particulates and polynuclear aromatic compounds (PACs). The first three gaseous emissions were measured with continuous gas analyzers. Soot and PAC emissions were simultaneously measured by passing the furnace effluent through a filter (to collect condensed-phase PACs) and a bed of XAD-4 adsorbent (to capture gaseous-phase PACs). Analysis involved soxhlet extraction, followed by gas chromatography-mass spectrometry (GC-MS). Results were contrasted with previously measured emissions from batch combustion of pulverized coal and tire-derived fuel (TDF) under similar conditions. Results showed that the particulate soot) and cumulative PAC emissions from batch combustion of latex gloves were more than an order of magnitude higher than those from cotton pads. The following values are indicative of the relative trends (but not necessarily absolute values) in emission yields: 26% of the mass of the latex was converted to soot, 11% of which was condensed PAC. Only 2% of the mass of cotton pads was converted to soot, and only 3% of the weight of that soot was condensed PAC. The PAC yields from latex were comparable to those from TDF. The PAC yields from cotton were higher than those from coal. A notable exception to this trend was that the three-ring gas-phase PAC yields from cotton were more significant than those from latex. Emission yields of CO and CO2 from batch combustion of cotton were, respectively, comparable and higher than those from latex, despite the fact that the carbon content of cotton was half that of latex. This is indicative of the more effective combustion of cotton. Nearly all of the mass of carbon of cotton gasified to CO and CO2 while only small fractions of the carbon in latex were converted to CO2 and CO (20% and 10%, respectively). Yields of NOx from batch combustions of latex and cotton accounted for 15% and 12%, respectively, of the mass of fuel nitrogen indicating that more fuel nitrogen was converted to NOx in the former case, possibly due to higher flame temperatures. No SO2 emissions were detected, indicating that during the fuel-rich combustion of latex, its sulfur content was converted to other compounds (such as H2S) or remained in the soot.  相似文献   
260.
Cytochrome P450-dependent aldrin epoxidation was characterized in third instar larvae of the aquatic midge, Chironomus tentans. Optimal in vitro assay conditions for the epoxidase were pH 7.6 and 31 degrees C. Activity was linear up to 40 min of incubation time and 0.5 mg microsomal protein per incubation. The activity was concentrated in the microsomal fraction of whole body homogenates and was NADPH-dependent. The effect of atrazine exposure on aldrin epoxidase was measured to determine if this herbicide induces cytochrome P450-dependent activity. Comparisons of control and atrazine-exposed midges indicated increased epoxidase activity as a result of atrazine exposure, and a 45 kDa protein of increased intensity was observed after SDS-PAGE of microsomal protein. The molecular weight of this protein was similar in size to cytochrome P450 enzymes reported for other insects. Heme staining of SDS-PAGE gels and immunochemical studies using a Drosophila melanogaster anti-P450 polyclonal antiserum, further support the cytochrome P450 nature of this inducible 45 kDa protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号