首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   645篇
  免费   32篇
  国内免费   9篇
安全科学   30篇
废物处理   19篇
环保管理   159篇
综合类   88篇
基础理论   220篇
污染及防治   112篇
评价与监测   32篇
社会与环境   16篇
灾害及防治   10篇
  2023年   5篇
  2022年   17篇
  2021年   13篇
  2020年   23篇
  2019年   18篇
  2018年   21篇
  2017年   38篇
  2016年   24篇
  2015年   23篇
  2014年   29篇
  2013年   44篇
  2012年   41篇
  2011年   47篇
  2010年   38篇
  2009年   31篇
  2008年   34篇
  2007年   36篇
  2006年   26篇
  2005年   20篇
  2004年   19篇
  2003年   21篇
  2002年   17篇
  2001年   10篇
  2000年   7篇
  1999年   10篇
  1998年   9篇
  1997年   10篇
  1996年   3篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   4篇
  1989年   6篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   3篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1971年   1篇
排序方式: 共有686条查询结果,搜索用时 882 毫秒
421.
Svejcar et al. (Environ Manage, 2014) offered several perspectives regarding Beschta et al. (Environ Manage 51:474–491, 2013)—a publication that addressed the interacting ecological effects of climate change and domestic, wild, and feral ungulates on public lands in the western United States (US)—by largely focusing on three livestock grazing issues: (1) legacy versus current day impacts; (2) grazing as a fire reduction tool; and (3) the complexity of grazing. Regarding these issues, we indicate that (1) legacy effects to western ecosystems were indeed significant and contemporary livestock use on public lands generally maintains or exacerbates many of those effects; (2) livestock grazing has been a major factor affecting fire frequency, fire severity, and ecosystem trajectories in the western US for over a century; and (3) the removal or reduction of grazing impacts in these altered ecosystems is the most effective means of initiating ecological recovery. Svejcar et al. (Environ Manage, 2014) offer no evidence that livestock use is consistent with the timely recovery of grazing-degraded uplands, riparian areas, or stream systems. We thus conclude that public-land ecosystems can best persist or cope with a changing climate by significantly reducing ungulate grazing and related impacts.  相似文献   
422.
Habitat heterogeneity can generate intraspecific diversity through local adaptation of populations. While it is becoming increasingly clear that population diversity can increase stability in species abundance, less is known about how population diversity can benefit consumers that can integrate across population diversity in their prey. Here we demonstrate cascading effects of thermal heterogeneity on trout-salmon interactions in streams where rainbow trout rely heavily on the seasonal availability of anadromous salmon eggs. Water temperature in an Alaskan stream varied spatially from 5 degrees C to 17.5 degrees C, and spawning sockeye salmon showed population differentiation associated with this thermal heterogeneity. Individuals that spawned early in cool regions of the 5 km long stream were genetically differentiated from those spawning in warmer regions later in the season. Sockeye salmon spawning generates a pulsed resource subsidy that supports the majority of seasonal growth in stream-dwelling rainbow trout. The spatial and temporal structuring of sockeye salmon spawn timing in our focal stream extended the duration of the pulsed subsidy compared to a thermally homogeneous stream with a single population of salmon. Further, rainbow trout adopted movement strategies that exploited the multiple pulses of egg subsidies in the thermally heterogeneous stream. Fish that moved to track the resource pulse grew at rates about 2.5 times higher than those that remained stationary or trout in the reference stream with a single seasonal pulse of eggs. Our results demonstrate that habitat heterogeneity can have important effects on the population diversity of dominant species, and in turn, influence their value to species that prey upon them. Therefore, habitat homogenization may have farther-reaching ecological effects than previously considered.  相似文献   
423.
Levine JM  McEachern AK  Cowan C 《Ecology》2011,92(12):2236-2247
A major challenge in forecasting the ecological consequences of climate change is understanding the relative importance of changes to mean conditions vs. changes to discrete climatic events, such as storms, frosts, or droughts. Here we show that the first major storm of the growing season strongly influences the population dynamics of three rare and endangered annual plant species in a coastal California (USA) ecosystem. In a field experiment we used moisture barriers and water addition to manipulate the timing and temperature associated with first major rains of the season. The three focal species showed two- to fivefold variation in per capita population growth rates between the different storm treatments, comparable to variation found in a prior experiment imposing eightfold differences in season-long precipitation. Variation in germination was a major demographic driver of how two of three species responded to the first rains. For one of these species, the timing of the storm was the most critical determinant of its germination, while the other showed enhanced germination with colder storm temperatures. The role of temperature was further supported by laboratory trials showing enhanced germination in cooler treatments. Our work suggests that, because of species-specific cues for demographic transitions such as germination, changes to discrete climate events may be as, if not more, important than changes to season-long variables.  相似文献   
424.
In January 1958, a survey of alpine flora was conducted along a recently constructed access road across the upper volcanic slopes of Mauna Loa, Hawaii (2525-3397 m). Only five native Hawaiian species were encountered on sparsely vegetated historic and prehistoric lava flows adjacent to the roadway. A resurvey of roadside flora in 2008 yielded a more than fourfold increase to 22 species, including nine native species not previously recorded. Eight new alien species have now invaded this alpine environment, although exclusively limited to a few individuals in ruderal habitat along the roadway. Alternative explanations for species invasion and altitudinal change over the past 50 years are evaluated: (1) changes related to continuing primary succession on ameliorating (weathering) young lava substrates; (2) local climate change; and (3) road improvements and increased vehicular access which promote enhanced car-borne dispersal of alien species derived from the expanding pool of potential colonizers naturalized on the island in recent decades. Unlike alpine environments in temperate latitudes, the energy component (warming) in climate change on Mauna Loa does not appear to be the unequivocal driver of plant invasion and range extension. Warming may be offset by other climate change factors including rainfall and evapotranspiration.  相似文献   
425.
Fluxes of organic matter across habitat boundaries are common in food webs. These fluxes may strongly influence community dynamics, depending on the extent to which they are used by consumers. Yet understanding of basal resource use by consumers is limited, because describing trophic pathways in complex food webs is difficult. We quantified resource use for zooplankton, zoobenthos, and fishes in four low-productivity lakes, using a Bayesian mixing model and measurements of hydrogen, carbon, and nitrogen stable isotope ratios. Multiple sources of uncertainty were explicitly incorporated into the model. As a result, posterior estimates of resource use were often broad distributions; nevertheless, clear patterns were evident. Zooplankton relied on terrestrial and pelagic primary production, while zoobenthos and fishes relied on terrestrial and benthic primary production. Across all consumer groups terrestrial reliance tended to be higher, and benthic reliance lower, in lakes where light penetration was low due to inputs of terrestrial dissolved organic carbon. These results support and refine an emerging consensus that terrestrial and benthic support of lake food webs can be substantial, and they imply that changes in the relative availability of basal resources drive the strength of cross-habitat trophic connections.  相似文献   
426.
Integrating nephelometers are commonly used to monitor airborne particulate matter. However, they must be calibrated prior to use. The Rayleigh scattering coefficients (b(RS), Mm(-1)), scattering cross sections (σ(RS), cm(2)), and Rayleigh multipliers for tetrafluoromethane (R-14), sulfur hexafluoride, pentafluoroethane (HFC-125), hexafluoropropene (HFC-216), 1,1,1,2,3,3,3,-heptafluoropropane (HFC-227ea), and octafluorocyclobutane (C-318) are reported from measurements made using a Radiance Research M903 integrating nephelometer operating at λ = 530 nm and calibration with gases of known scattering constants. Rayleigh multipliers (±90% conf. int.) were found to be 2.6 ± 0.5, 6.60 ± 0.07, 7.5 ± 1, 14.8 ± 0.9, 15.6 ± 0.5, and 22.3 ± 0.8 times that of air, respectively. To the best of our knowledge, these are the first reported values for R-14, HFC-216, HFC-125, and C-318. Experimental accuracy is supported through measurements of values for SF(6) and HFC-227ea which agree to within 3% of previous literature reports. In addition to documenting fundamental Rayleigh scattering data for the first time, the information presented within will find use for calibration of optical scattering sensors such as integrating nephelometers.  相似文献   
427.
Diffusion is an important process for sediment-water exchange and plays a vital role in controlling water quality. Fugacity fraction (ff) was used to estimate the sediment-water diffusion of polycyclic aromatic hydrocarbons (PAHs) between seawater and surficial sediment. A total of 33 surface sediment and sea water samples were collected concurrently from the northeast coastal area in China and 25 PAHs were analyzed including the alkylated and chlorated PAHs. Fugacity fraction was calculated based on the PAH concentrations in water and sediment, octanol-water partition coefficient of PAHs, organic matter content in sediment, and density of sediment. The calculated results showed that ff increased with decreasing molecular weight of PAHs. The low molecular weight PAHs (2-3 rings) transferred from sediment to water and the sediment acted as a secondary source to the water. The medium molecular weight PAHs (4-5 rings) were close to the sediment-water equilibrium and the transfer tendency shifted between sediment and water. The high molecular weight PAHs (5-6 rings) transferred from water into sediment and the sediment acted as a sink. Soot carbon and the difference of PAH concentrations between sediment and water were found to be important factors affecting the sediment-water diffusion. This study provided new insight into the process of sediment-water diffusion, which has a great influence on the quality of water, especially in severely-polluted sediment areas.  相似文献   
428.
Food and Environmental Virology - Faecal shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its subsequent detection in wastewater turned the spotlight onto...  相似文献   
429.
430.
Conservation technology holds the potential to vastly increase conservationists’ ability to understand and address critical environmental challenges, but systemic constraints appear to hamper its development and adoption. Understanding of these constraints and opportunities for advancement remains limited. We conducted a global online survey of 248 conservation technology users and developers to identify perceptions of existing tools’ current performance and potential impact, user and developer constraints, and key opportunities for growth. We also conducted focus groups with 45 leading experts to triangulate findings. The technologies with the highest perceived potential were machine learning and computer vision, eDNA and genomics, and networked sensors. A total of 95%, 94%, and 92% respondents, respectively, rated them as very helpful or game changers. The most pressing challenges affecting the field as a whole were competition for limited funding, duplication of efforts, and inadequate capacity building. A total of 76%, 67%, and 55% respondents, respectively, identified these as primary concerns. The key opportunities for growth identified in focus groups were increasing collaboration and information sharing, improving the interoperability of tools, and enhancing capacity for data analyses at scale. Some constraints appeared to disproportionately affect marginalized groups. Respondents in countries with developing economies were more likely to report being constrained by upfront costs, maintenance costs, and development funding (p = 0.048, odds ratio [OR] = 2.78; p = 0.005, OR = 4.23; p = 0.024, OR = 4.26), and female respondents were more likely to report being constrained by development funding and perceived technical skills (p = 0.027, OR = 3.98; p = 0.048, OR = 2.33). To our knowledge, this is the first attempt to formally capture the perspectives and needs of the global conservation technology community, providing foundational data that can serve as a benchmark to measure progress. We see tremendous potential for this community to further the vision they define, in which collaboration trumps competition; solutions are open, accessible, and interoperable; and user-friendly processing tools empower the rapid translation of data into conservation action. Article impact statement: Addressing financing, coordination, and capacity-building constraints is critical to the development and adoption of conservation technology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号